# # Toyota Motor Europe NV/SA and its affiliated companies retain all intellectual # property and proprietary rights in and to this software and related documentation. # Any commercial use, reproduction, disclosure or distribution of this software and # related documentation without an express license agreement from Toyota Motor Europe NV/SA # is strictly prohibited. # from typing import Tuple, Literal import torch import torch.nn.functional as F import math import numpy as np from scipy.spatial.transform import Rotation def align_cameras_to_axes( R: torch.Tensor, T: torch.Tensor, target_convention: Literal["opengl", "opencv"] = None, ): """align the averaged axes of cameras with the world axes. Args: R: rotation matrix (N, 3, 3) T: translation vector (N, 3) """ # The column vectors of R are the basis vectors of each camera. # We construct new bases by taking the mean directions of axes, then use Gram-Schmidt # process to make them orthonormal bases_c2w = gram_schmidt_orthogonalization(R.mean(0)) if target_convention == "opengl": bases_c2w[:, [1, 2]] *= -1 # flip y and z axes elif target_convention == "opencv": pass bases_w2c = bases_c2w.t() # convert the camera poses into the new coordinate system R = bases_w2c[None, ...] @ R T = bases_w2c[None, ...] @ T return R, T def convert_camera_convention(camera_convention_conversion: str, R: torch.Tensor, K: torch.Tensor, H: int, W: int): if camera_convention_conversion is not None: if camera_convention_conversion == "opencv->opengl": R[:, :3, [1, 2]] *= -1 # flip y of the principal point K[..., 1, 2] = H - K[..., 1, 2] elif camera_convention_conversion == "opencv->pytorch3d": R[:, :3, [0, 1]] *= -1 # flip x and y of the principal point K[..., 0, 2] = W - K[..., 0, 2] K[..., 1, 2] = H - K[..., 1, 2] elif camera_convention_conversion == "opengl->pytorch3d": R[:, :3, [0, 2]] *= -1 # flip x of the principal point K[..., 0, 2] = W - K[..., 0, 2] else: raise ValueError( f"Unknown camera coordinate conversion: {camera_convention_conversion}." ) return R, K def gram_schmidt_orthogonalization(M: torch.tensor): """conducting Gram-Schmidt process to transform column vectors into orthogonal bases Args: M: An matrix (num_rows, num_cols) Return: M: An matrix with orthonormal column vectors (num_rows, num_cols) """ num_rows, num_cols = M.shape for c in range(1, num_cols): M[:, [c - 1, c]] = F.normalize(M[:, [c - 1, c]], p=2, dim=0) M[:, [c]] -= M[:, :c] @ (M[:, :c].T @ M[:, [c]]) M[:, -1] = F.normalize(M[:, -1], p=2, dim=0) return M def projection_from_intrinsics(K: np.ndarray, image_size: Tuple[int], near: float=0.01, far:float=10, flip_y: bool=False, z_sign=-1): """ Transform points from camera space (x: right, y: up, z: out) to clip space (x: right, y: down, z: in) Args: K: Intrinsic matrix, (N, 3, 3) K = [[ [fx, 0, cx], [0, fy, cy], [0, 0, 1], ] ] image_size: (height, width) Output: proj = [[ [2*fx/w, 0.0, (w - 2*cx)/w, 0.0 ], [0.0, 2*fy/h, (h - 2*cy)/h, 0.0 ], [0.0, 0.0, z_sign*(far+near) / (far-near), -2*far*near / (far-near)], [0.0, 0.0, z_sign, 0.0 ] ] ] """ B = K.shape[0] h, w = image_size if K.shape[-2:] == (3, 3): fx = K[..., 0, 0] fy = K[..., 1, 1] cx = K[..., 0, 2] cy = K[..., 1, 2] elif K.shape[-1] == 4: # fx, fy, cx, cy = K[..., [0, 1, 2, 3]].split(1, dim=-1) fx = K[..., [0]] fy = K[..., [1]] cx = K[..., [2]] cy = K[..., [3]] else: raise ValueError(f"Expected K to be (N, 3, 3) or (N, 4) but got: {K.shape}") proj = np.zeros([B, 4, 4]) proj[:, 0, 0] = fx * 2 / w proj[:, 1, 1] = fy * 2 / h proj[:, 0, 2] = (w - 2 * cx) / w proj[:, 1, 2] = (h - 2 * cy) / h proj[:, 2, 2] = z_sign * (far+near) / (far-near) proj[:, 2, 3] = -2*far*near / (far-near) proj[:, 3, 2] = z_sign if flip_y: proj[:, 1, 1] *= -1 return proj class OrbitCamera: def __init__(self, W, H, r=2, fovy=60, znear=1e-8, zfar=10, convention: Literal["opengl", "opencv"]="opengl"): self.image_width = W self.image_height = H self.radius_default = r self.fovy_default = fovy self.znear = znear self.zfar = zfar self.convention = convention self.up = np.array([0, 1, 0], dtype=np.float32) self.reset() def reset(self): """ The internal state of the camera is based on the OpenGL convention, but properties are converted to the target convention when queried. """ self.rot = Rotation.from_matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) # OpenGL convention self.look_at = np.array([0, 0, 0], dtype=np.float32) # look at this point self.radius = self.radius_default # camera distance from center self.fovy = self.fovy_default if self.convention == "opencv": self.z_sign = 1 self.y_sign = 1 elif self.convention == "opengl": self.z_sign = -1 self.y_sign = -1 else: raise ValueError(f"Unknown convention: {self.convention}") @property def fovx(self): return self.fovy / self.image_height * self.image_width @property def intrinsics(self): focal = self.image_height / (2 * np.tan(np.radians(self.fovy) / 2)) return np.array([focal, focal, self.image_width // 2, self.image_height // 2]) @property def projection_matrix(self): return projection_from_intrinsics(self.intrinsics[None], (self.image_height, self.image_width), self.znear, self.zfar, z_sign=self.z_sign)[0] @property def world_view_transform(self): return np.linalg.inv(self.pose) # world2cam @property def full_proj_transform(self): return self.projection_matrix @ self.world_view_transform @property def pose(self): # first move camera to radius pose = np.eye(4, dtype=np.float32) pose[2, 3] += self.radius # rotate rot = np.eye(4, dtype=np.float32) rot[:3, :3] = self.rot.as_matrix() pose = rot @ pose # translate pose[:3, 3] -= self.look_at if self.convention == "opencv": pose[:, [1, 2]] *= -1 elif self.convention == "opengl": pass else: raise ValueError(f"Unknown convention: {self.convention}") return pose def orbit(self, dx, dy): # rotate along camera up/side axis! side = self.rot.as_matrix()[:3, 0] rotvec_x = self.up * np.radians(-0.3 * dx) rotvec_y = side * np.radians(-0.3 * dy) self.rot = Rotation.from_rotvec(rotvec_x) * Rotation.from_rotvec(rotvec_y) * self.rot def scale(self, delta): self.radius *= 1.1 ** (-delta) def pan(self, dx, dy, dz=0): # pan in camera coordinate system (careful on the sensitivity!) d = np.array([dx, -dy, dz]) # the y axis is flipped self.look_at += 2 * self.rot.as_matrix()[:3, :3] @ d * self.radius / self.image_height * math.tan(np.radians(self.fovy) / 2)