# Copyright (c) 2023-2024, Zexin He # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from accelerate.logging import get_logger logger = get_logger(__name__) class DPTHead(nn.Module): def __init__( self, in_channels, inner_channels, use_clstoken=False, out_channel=1024, ): super(DPTHead, self).__init__() self.use_clstoken = use_clstoken self.projects = nn.ModuleList([ nn.Conv2d( in_channels=in_channels, out_channels=out_channel, kernel_size=1, stride=1, padding=0, ) for out_channel in inner_channels ]) if use_clstoken: self.readout_projects = nn.ModuleList() for _ in range(len(self.projects)): self.readout_projects.append( nn.Sequential( nn.Linear(2 * in_channels, in_channels), nn.GELU())) self.output_conv = nn.Conv2d(sum(inner_channels) , out_channel, kernel_size=1, stride=1, padding=0) def forward(self, out_features, patch_h, patch_w): out = [] for i, x in enumerate(out_features): if self.use_clstoken: x, cls_token = x[0], x[1] readout = cls_token.unsqueeze(1).expand_as(x) x = self.readout_projects[i](torch.cat((x, readout), -1)) else: x = x[0] x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)) x = self.projects[i](x) out.append(x) fusion_feats = torch.cat(out, dim=1) fusion_feats = self.output_conv(fusion_feats) return fusion_feats class Dinov2FusionWrapper(nn.Module): """ Dinov2FusionWrapper using original implementation, hacked with modulation. """ def __init__(self, model_name: str, modulation_dim: int = None, freeze: bool = True, encoder_feat_dim: int = 384): super().__init__() self.modulation_dim = modulation_dim self.model = self._build_dinov2(model_name, modulation_dim=modulation_dim) self.intermediate_layer_idx_info = { 'dinov2_vits14_reg': [2, 5, 8, 11], 'dinov2_vitb14_reg': [2, 5, 8, 11], 'dinov2_vitl14_reg': [4, 11, 17, 23], 'dinov2_vitg14_reg': [9, 19, 29, 39] } self.intermediate_layer_idx = self.intermediate_layer_idx_info[model_name] self.fusion_head = DPTHead(in_channels=self.model.embed_dim, inner_channels=[self.model.embed_dim] * 4, out_channel=encoder_feat_dim) if freeze: if modulation_dim is not None: raise ValueError("Modulated Dinov2 requires training, freezing is not allowed.") self._freeze() def _freeze(self): # logger.warning(f"======== Freezing Dinov2FusionWrapper ========") self.model.eval() for name, param in self.model.named_parameters(): param.requires_grad = False @staticmethod def _build_dinov2(model_name: str, modulation_dim: int = None, pretrained: bool = True): from importlib import import_module dinov2_hub = import_module(".dinov2.hub.backbones", package=__package__) model_fn = getattr(dinov2_hub, model_name) # logger.debug(f"Modulation dim for Dinov2 is {modulation_dim}.") model = model_fn(modulation_dim=modulation_dim, pretrained=pretrained) return model @torch.compile def forward(self, image: torch.Tensor, mod: torch.Tensor = None): # image: [N, C, H, W] # mod: [N, D] or None # RGB image with [0,1] scale and properly sized patch_h, patch_w = image.shape[-2] // self.model.patch_size, image.shape[-1] // self.model.patch_size features = self.model.get_intermediate_layers(image, self.intermediate_layer_idx, return_class_token=True) out_local = self.fusion_head(features, patch_h, patch_w) out_global = None if out_global is not None: ret = torch.cat([out_local.permute(0, 2, 3, 1).flatten(1, 2), out_global.unsqueeze(1)], dim=1) else: ret = out_local.permute(0, 2, 3, 1).flatten(1, 2) return ret