import os import cv2 import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import matplotlib as mpl import os import sys os.environ["PYOPENGL_PLATFORM"] = "egl" from pytorch3d.structures import Meshes, Pointclouds from pytorch3d.renderer import ( PointLights, DirectionalLights, PerspectiveCameras, Materials, SoftPhongShader, RasterizationSettings, MeshRenderer, MeshRendererWithFragments, MeshRasterizer, TexturesVertex, PointsRasterizationSettings, PointsRenderer, PointsRasterizer, AlphaCompositor ) import torch import torch.nn as nn def vis_keypoints_with_skeleton(img, kps, kps_lines, kp_thresh=0.4, alpha=1): # Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv. cmap = plt.get_cmap('rainbow') colors = [cmap(i) for i in np.linspace(0, 1, len(kps_lines) + 2)] colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors] # Perform the drawing on a copy of the image, to allow for blending. kp_mask = np.copy(img) # Draw the keypoints. for l in range(len(kps_lines)): i1 = kps_lines[l][0] i2 = kps_lines[l][1] p1 = kps[0, i1].astype(np.int32), kps[1, i1].astype(np.int32) p2 = kps[0, i2].astype(np.int32), kps[1, i2].astype(np.int32) if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh: cv2.line( kp_mask, p1, p2, color=colors[l], thickness=2, lineType=cv2.LINE_AA) if kps[2, i1] > kp_thresh: cv2.circle( kp_mask, p1, radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA) if kps[2, i2] > kp_thresh: cv2.circle( kp_mask, p2, radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA) # Blend the keypoints. return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0) def vis_keypoints(img, kps, alpha=1): # Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv. cmap = plt.get_cmap('rainbow') colors = [cmap(i) for i in np.linspace(0, 1, len(kps) + 2)] colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors] # Perform the drawing on a copy of the image, to allow for blending. kp_mask = np.copy(img) # Draw the keypoints. for i in range(len(kps)): p = kps[i][0].astype(np.int32), kps[i][1].astype(np.int32) cv2.circle(kp_mask, p, radius=3, color=colors[i], thickness=-1, lineType=cv2.LINE_AA) # Blend the keypoints. return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0) def render_mesh(mesh, face, cam_param, bkg, blend_ratio=1.0, return_bg_mask=False, R=None, T=None, return_fragments=False): mesh = mesh.cuda()[None,:,:] face = torch.LongTensor(face.astype(np.int64)).cuda()[None,:,:] cam_param = {k: v.cuda()[None,:] for k,v in cam_param.items()} render_shape = (bkg.shape[0], bkg.shape[1]) # height, width batch_size, vertex_num = mesh.shape[:2] textures = TexturesVertex(verts_features=torch.ones((batch_size,vertex_num,3)).float().cuda()) mesh = torch.stack((-mesh[:,:,0], -mesh[:,:,1], mesh[:,:,2]),2) # reverse x- and y-axis following PyTorch3D axis direction mesh = Meshes(mesh, face, textures) if R is None: cameras = PerspectiveCameras(focal_length=cam_param['focal'], principal_point=cam_param['princpt'], device='cuda', in_ndc=False, image_size=torch.LongTensor(render_shape).cuda().view(1,2)) else: cameras = PerspectiveCameras(focal_length=cam_param['focal'], principal_point=cam_param['princpt'], device='cuda', in_ndc=False, image_size=torch.LongTensor(render_shape).cuda().view(1,2), R=R, T=T) raster_settings = RasterizationSettings(image_size=render_shape, blur_radius=0.0, faces_per_pixel=1, bin_size=0) rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings).cuda() lights = PointLights(device='cuda') shader = SoftPhongShader(device='cuda', cameras=cameras, lights=lights) materials = Materials( device='cuda', specular_color=[[0.0, 0.0, 0.0]], shininess=0.0 ) # render with torch.no_grad(): renderer = MeshRendererWithFragments(rasterizer=rasterizer, shader=shader) images, fragments = renderer(mesh, materials=materials) # background masking is_bkg = (fragments.zbuf <= 0).float().cpu().numpy()[0] render = images[0,:,:,:3].cpu().numpy() fg = render * blend_ratio + bkg/255 * (1 - blend_ratio) render = fg * (1 - is_bkg) * 255 + bkg * is_bkg ret = [render] if return_bg_mask: ret.append(is_bkg) if return_fragments: ret.append(fragments) return tuple(ret) def rasterize_mesh(mesh, face, cam_param, height, width, return_bg_mask=False, R=None, T=None): mesh = mesh.cuda()[None,:,:] face = face.long().cuda()[None,:,:] cam_param = {k: v.cuda()[None,:] for k,v in cam_param.items()} render_shape = (height, width) batch_size, vertex_num = mesh.shape[:2] textures = TexturesVertex(verts_features=torch.ones((batch_size,vertex_num,3)).float().cuda()) mesh = torch.stack((-mesh[:,:,0], -mesh[:,:,1], mesh[:,:,2]),2) # reverse x- and y-axis following PyTorch3D axis direction mesh = Meshes(mesh, face, textures) if R is None: cameras = PerspectiveCameras(focal_length=cam_param['focal'], principal_point=cam_param['princpt'], device='cuda', in_ndc=False, image_size=torch.LongTensor(render_shape).cuda().view(1,2)) else: cameras = PerspectiveCameras(focal_length=cam_param['focal'], principal_point=cam_param['princpt'], device='cuda', in_ndc=False, image_size=torch.LongTensor(render_shape).cuda().view(1,2), R=R, T=T) raster_settings = RasterizationSettings(image_size=render_shape, blur_radius=0.0, faces_per_pixel=1, bin_size=0) rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings).cuda() # render fragments = rasterizer(mesh) ret = [fragments] if return_bg_mask: # background masking is_bkg = (fragments.zbuf <= 0).float().cpu().numpy()[0] ret.append(is_bkg) return tuple(ret) def rasterize_points(points, cam_param, height, width, return_bg_mask=False, R=None, T=None, to_cpu=False, points_per_pixel=5, radius=0.01): points = torch.stack((-points[:, 0], -points[:, 1], points[:, 2]), 1) # reverse x- and y-axis following PyTorch3D axis direction device = points.device if len(points.shape) == 2: points = [points] pointclouds = Pointclouds(points=points) cam_param = {k: v.to(device)[None,:] for k,v in cam_param.items()} render_shape = (height, width) # height, width if R is None: cameras = PerspectiveCameras(focal_length=cam_param['focal'], principal_point=cam_param['princpt'], device=device, in_ndc=False, image_size=torch.LongTensor(render_shape).to(device).view(1,2)) else: cameras = PerspectiveCameras(focal_length=cam_param['focal'], principal_point=cam_param['princpt'], device=device, in_ndc=False, image_size=torch.LongTensor(render_shape).to(device).view(1,2), R=R, T=T) raster_settings = PointsRasterizationSettings(image_size=render_shape, radius=radius, points_per_pixel=points_per_pixel, max_points_per_bin=82000) rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings).to(device) # render fragments = rasterizer(pointclouds) # background masking ret = [fragments] if return_bg_mask: if to_cpu: is_bkg = (fragments.zbuf <= 0).all(dim=-1, keepdim=True).float().cpu().numpy()[0] else: is_bkg = (fragments.zbuf <= 0).all(dim=-1, keepdim=True).float()[0] ret.append(is_bkg) return tuple(ret) def render_points(points, cam_param, bkg, blend_ratio=1.0, return_bg_mask=False, R=None, T=None, return_fragments=False, rgbs=None): points = torch.stack((-points[:, 0], -points[:, 1], points[:, 2]), 1) # reverse x- and y-axis following PyTorch3D axis direction if rgbs is None: rgbs = torch.ones_like(points) if len(points.shape) == 2: points = [points] rgbs = [rgbs] pointclouds = Pointclouds(points=points, features=rgbs).cuda() cam_param = {k: v.cuda()[None,:] for k,v in cam_param.items()} render_shape = (bkg.shape[0], bkg.shape[1]) # height, width if R is None: cameras = PerspectiveCameras(focal_length=cam_param['focal'], principal_point=cam_param['princpt'], device='cuda', in_ndc=False, image_size=torch.LongTensor(render_shape).cuda().view(1,2)) else: cameras = PerspectiveCameras(focal_length=cam_param['focal'], principal_point=cam_param['princpt'], device='cuda', in_ndc=False, image_size=torch.LongTensor(render_shape).cuda().view(1,2), R=R, T=T) raster_settings = PointsRasterizationSettings(image_size=render_shape, radius=0.01, points_per_pixel=5) rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings).cuda() # render with torch.no_grad(): fragments = rasterizer(pointclouds) renderer = PointsRenderer(rasterizer=rasterizer, compositor=AlphaCompositor(background_color=(0, 0, 0))) images = renderer(pointclouds) # background masking is_bkg = (fragments.zbuf <= 0).all(dim=-1, keepdim=True).float().cpu().numpy()[0] render = images[0,:,:,:3].cpu().numpy() fg = render * blend_ratio + bkg/255 * (1 - blend_ratio) render = fg * (1 - is_bkg) * 255 + bkg * is_bkg ret = [render] if return_bg_mask: ret.append(is_bkg) if return_fragments: ret.append(fragments) return tuple(ret) class RenderMesh(nn.Module): def __init__(self, image_size, obj_filename=None, faces=None, device='cpu'): super(RenderMesh, self).__init__() self.device = device self.image_size = image_size if obj_filename is not None: verts, faces, aux = load_obj(obj_filename, load_textures=False) self.faces = faces.verts_idx elif faces is not None: import numpy as np self.faces = torch.tensor(faces.astype(np.int32)) else: raise NotImplementedError('Must have faces.') self.raster_settings = RasterizationSettings(image_size=image_size, blur_radius=0.0, faces_per_pixel=1) self.lights = PointLights(device=device, location=[[0.0, 0.0, 3.0]]) def _build_cameras(self, transform_matrix, focal_length, principal_point=None, intr=None): batch_size = transform_matrix.shape[0] screen_size = torch.tensor( [self.image_size, self.image_size], device=self.device ).float()[None].repeat(batch_size, 1) if principal_point is None: principal_point = torch.zeros(batch_size, 2, device=self.device).float() # print("==="*16, "principle_points:", principal_point) # print("==="*16, "focal_length:", focal_length) if intr is None: cameras_kwargs = { 'principal_point': principal_point, 'focal_length': focal_length, 'image_size': screen_size, 'device': self.device, } else: cameras_kwargs = { 'principal_point': principal_point, 'focal_length': torch.tensor([intr[0, 0], intr[1, 1]]).unsqueeze(0), 'image_size': screen_size, 'device': self.device, } cameras = PerspectiveCameras(**cameras_kwargs, R=transform_matrix[:, :3, :3], T=transform_matrix[:, :3, 3]) return cameras def forward( self, vertices, cameras=None, transform_matrix=None, focal_length=None, principal_point=None, only_rasterize=False, intr=None, ): if cameras is None: cameras = self._build_cameras(transform_matrix, focal_length, principal_point=principal_point, intr=intr) faces = self.faces[None].repeat(vertices.shape[0], 1, 1) # Initialize each vertex to be white in color. verts_rgb = torch.ones_like(vertices) # (1, V, 3) textures = TexturesVertex(verts_features=verts_rgb.to(self.device)) mesh = Meshes( verts=vertices.to(self.device), faces=faces.to(self.device), textures=textures ) renderer = MeshRendererWithFragments( rasterizer=MeshRasterizer(cameras=cameras, raster_settings=self.raster_settings), shader=SoftPhongShader(cameras=cameras, lights=self.lights, device=self.device) ) render_results, fragments = renderer(mesh) render_results = render_results.permute(0, 3, 1, 2) if only_rasterize: return fragments images = render_results[:, :3] alpha_images = render_results[:, 3:] images[alpha_images.expand(-1, 3, -1, -1)<0.5] = 0.0 return images*255, alpha_images class RenderPoints(nn.Module): def __init__(self, image_size, obj_filename=None, device='cpu'): super(RenderPoints, self).__init__() self.device = device self.image_size = image_size if obj_filename is not None: verts = load_obj(obj_filename, load_textures=False) self.raster_settings = PointsRasterizationSettings(image_size=image_size, radius=0.01, points_per_pixel=1) self.lights = PointLights(device=device, location=[[0.0, 0.0, 3.0]]) def _build_cameras(self, transform_matrix, focal_length, principal_point=None): batch_size = transform_matrix.shape[0] screen_size = torch.tensor( [self.image_size, self.image_size], device=self.device ).float()[None].repeat(batch_size, 1) if principal_point is None: principal_point = torch.zeros(batch_size, 2, device=self.device).float() # print("==="*16, "principle_points:", principal_point) # print("==="*16, "focal_length:", focal_length) cameras_kwargs = { 'principal_point': principal_point, 'focal_length': focal_length, 'image_size': screen_size, 'device': self.device, } cameras = PerspectiveCameras(**cameras_kwargs, R=transform_matrix[:, :3, :3], T=transform_matrix[:, :3, 3]) return cameras def forward( self, vertices, cameras=None, transform_matrix=None, focal_length=None, principal_point=None, only_rasterize=False ): if cameras is None: cameras = self._build_cameras(transform_matrix, focal_length, principal_point=principal_point) # Initialize each vertex to be white in color. verts_rgb = torch.ones_like(vertices) # (1, V, 3) pointclouds = Pointclouds(points=vertices, features=verts_rgb).cuda() # render rasterizer = PointsRasterizer(cameras=cameras, raster_settings=self.raster_settings).cuda() if only_rasterize: fragments = rasterizer(pointclouds) return fragments renderer = PointsRenderer(rasterizer=rasterizer, compositor=AlphaCompositor(background_color=(0, 0, 0))) render_results = renderer(pointclouds).permute(0, 3, 1, 2) images = render_results[:, :3] alpha_images = render_results[:, 3:] return images*255, alpha_images