# Copyright (c) 2023-2024, Zexin He # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod import traceback import json import numpy as np import torch from PIL import Image from typing import Optional, Union from megfile import smart_open, smart_path_join, smart_exists class BaseDataset(torch.utils.data.Dataset, ABC): def __init__(self, root_dirs: str, meta_path: Optional[Union[list, str]]): super().__init__() self.root_dirs = root_dirs self.uids = self._load_uids(meta_path) def __len__(self): return len(self.uids) @abstractmethod def inner_get_item(self, idx): pass def __getitem__(self, idx): try: return self.inner_get_item(idx) except Exception as e: traceback.print_exc() print(f"[DEBUG-DATASET] Error when loading {self.uids[idx]}") # raise e return self.__getitem__((idx + 1) % self.__len__()) @staticmethod def _load_uids(meta_path: Optional[Union[list, str]]): # meta_path is a json file if isinstance(meta_path, str): with open(meta_path, 'r') as f: uids = json.load(f) else: uids_lst = [] max_total = 0 for pth, weight in meta_path: with open(pth, 'r') as f: uids = json.load(f) max_total = max(len(uids) / weight, max_total) uids_lst.append([uids, weight, pth]) merged_uids = [] for uids, weight, pth in uids_lst: repeat = 1 if len(uids) < int(weight * max_total): repeat = int(weight * max_total) // len(uids) cur_uids = uids * repeat merged_uids += cur_uids print("Data Path:", pth, "Repeat:", repeat, "Final Length:", len(cur_uids)) uids = merged_uids print("Total UIDs:", len(uids)) return uids @staticmethod def _load_rgba_image(file_path, bg_color: float = 1.0): ''' Load and blend RGBA image to RGB with certain background, 0-1 scaled ''' rgba = np.array(Image.open(smart_open(file_path, 'rb'))) rgba = torch.from_numpy(rgba).float() / 255.0 rgba = rgba.permute(2, 0, 1).unsqueeze(0) rgb = rgba[:, :3, :, :] * rgba[:, 3:4, :, :] + bg_color * (1 - rgba[:, 3:, :, :]) rgba[:, :3, ...] * rgba[:, 3:, ...] + (1 - rgba[:, 3:, ...]) return rgb @staticmethod def _locate_datadir(root_dirs, uid, locator: str): for root_dir in root_dirs: datadir = smart_path_join(root_dir, uid, locator) if smart_exists(datadir): return root_dir raise FileNotFoundError(f"Cannot find valid data directory for uid {uid}")