|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Literal, List |
|
from copy import deepcopy |
|
import json |
|
import tyro |
|
from pathlib import Path |
|
import shutil |
|
import random |
|
|
|
|
|
class NeRFDatasetAssembler: |
|
def __init__(self, src_folders: List[Path], tgt_folder: Path, division_mode: Literal['random_single', 'random_group', 'last']='random_group'): |
|
self.src_folders = src_folders |
|
self.tgt_folder = tgt_folder |
|
self.num_timestep = 0 |
|
|
|
|
|
subjects = [sf.name.split('_')[0] for sf in src_folders] |
|
for s in subjects: |
|
assert s == subjects[0], f"Cannot combine datasets from different subjects: {subjects}" |
|
subject = subjects[0] |
|
random.seed(subject) |
|
|
|
if division_mode == 'random_single': |
|
self.src_folders_test = [self.src_folders.pop(int(random.uniform(0, 1) * len(src_folders)))] |
|
elif division_mode == 'random_group': |
|
|
|
self.src_folders_test = [] |
|
num_all = len(self.src_folders) |
|
group_size = 10 |
|
num_test = max(1, num_all // group_size) |
|
indices_test = [] |
|
for gi in range(num_test): |
|
idx = min(num_all - 1, random.randint(0, group_size - 1) + gi * group_size) |
|
indices_test.append(idx) |
|
|
|
for idx in indices_test: |
|
self.src_folders_test.append(self.src_folders.pop(idx)) |
|
elif division_mode == 'last': |
|
self.src_folders_test = [self.src_folders.pop(-1)] |
|
else: |
|
raise ValueError(f"Unknown division mode: {division_mode}") |
|
|
|
self.src_folders_train = self.src_folders |
|
|
|
def write(self): |
|
self.combine_dbs(self.src_folders_train, division='train') |
|
self.combine_dbs(self.src_folders_test, division='test') |
|
|
|
def combine_dbs(self, src_folders, division: Optional[Literal['train', 'test']] = None): |
|
db = None |
|
for i, src_folder in enumerate(src_folders): |
|
dbi_path = src_folder / "transforms.json" |
|
assert dbi_path.exists(), f"Could not find {dbi_path}" |
|
|
|
dbi = json.load(open(dbi_path, "r")) |
|
|
|
dbi['timestep_indices'] = [t + self.num_timestep for t in dbi['timestep_indices']] |
|
self.num_timestep += len(dbi['timestep_indices']) |
|
for frame in dbi['frames']: |
|
|
|
frame.pop('timestep_index_original') |
|
frame.pop('timestep_id') |
|
|
|
|
|
frame['timestep_index'] = dbi['timestep_indices'][frame['timestep_index']] |
|
|
|
|
|
frame['file_path'] = str(Path('..') / Path(src_folder.name) / frame['file_path']) |
|
frame['flame_param_path'] = str(Path('..') / Path(src_folder.name) / frame['flame_param_path']) |
|
frame['fg_mask_path'] = str(Path('..') / Path(src_folder.name) / frame['fg_mask_path']) |
|
|
|
if db is None: |
|
db = dbi |
|
else: |
|
db['frames'] += dbi['frames'] |
|
db['timestep_indices'] += dbi['timestep_indices'] |
|
|
|
if not self.tgt_folder.exists(): |
|
self.tgt_folder.mkdir(parents=True) |
|
|
|
if division == 'train': |
|
|
|
cano_flame_param_path = src_folders[0] / "canonical_flame_param.npz" |
|
tgt_flame_param_path = self.tgt_folder / f"canonical_flame_param.npz" |
|
print(f"Copying canonical flame param: {tgt_flame_param_path}") |
|
shutil.copy(cano_flame_param_path, tgt_flame_param_path) |
|
|
|
|
|
db_train = {k: v for k, v in db.items() if k not in ['frames', 'camera_indices']} |
|
db_train['frames'] = [] |
|
db_val = deepcopy(db_train) |
|
|
|
if len(db['camera_indices']) > 1: |
|
|
|
if 8 in db['camera_indices']: |
|
|
|
db_train['camera_indices'] = [i for i in db['camera_indices'] if i != 8] |
|
db_val['camera_indices'] = [8] |
|
else: |
|
|
|
db_train['camera_indices'] = db['camera_indices'][:-1] |
|
db_val['camera_indices'] = [db['camera_indices'][-1]] |
|
else: |
|
|
|
db_train['camera_indices'] = db['camera_indices'] |
|
db_val['camera_indices'] = [] |
|
|
|
for frame in db['frames']: |
|
if frame['camera_index'] in db_train['camera_indices']: |
|
db_train['frames'].append(frame) |
|
elif frame['camera_index'] in db_val['camera_indices']: |
|
db_val['frames'].append(frame) |
|
else: |
|
raise ValueError(f"Unknown camera index: {frame['camera_index']}") |
|
|
|
write_json(db_train, self.tgt_folder, 'train') |
|
write_json(db_val, self.tgt_folder, 'val') |
|
|
|
with open(self.tgt_folder / 'sequences_trainval.txt', 'w') as f: |
|
for folder in src_folders: |
|
f.write(folder.name + '\n') |
|
else: |
|
db['timestep_indices'] = sorted(db['timestep_indices']) |
|
write_json(db, self.tgt_folder, division) |
|
|
|
with open(self.tgt_folder / f'sequences_{division}.txt', 'w') as f: |
|
for folder in src_folders: |
|
f.write(folder.name + '\n') |
|
|
|
|
|
def write_json(db, tgt_folder, division=None): |
|
fname = "transforms.json" if division is None else f"transforms_{division}.json" |
|
json_path = tgt_folder / fname |
|
print(f"Writing database: {json_path}") |
|
with open(json_path, "w") as f: |
|
json.dump(db, f, indent=4) |
|
|
|
def main( |
|
src_folders: List[Path], |
|
tgt_folder: Path, |
|
division_mode: Literal['random_single', 'random_group', 'last']='random_group', |
|
): |
|
incomplete = False |
|
print("==== Begin assembling datasets ====") |
|
print(f"Division mode: {division_mode}") |
|
for src_folder in src_folders: |
|
try: |
|
assert src_folder.exists(), f"Error: could not find {src_folder}" |
|
assert src_folder.parent == tgt_folder.parent, "All source folders must be in the same parent folder as the target folder" |
|
|
|
except AssertionError as e: |
|
print(e) |
|
incomplete = True |
|
|
|
if incomplete: |
|
return |
|
|
|
nerf_dataset_assembler = NeRFDatasetAssembler(src_folders, tgt_folder, division_mode) |
|
nerf_dataset_assembler.write() |
|
|
|
print("Done!") |
|
|
|
|
|
if __name__ == "__main__": |
|
tyro.cli(main) |
|
|