|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import rembg |
|
import cv2 |
|
|
|
|
|
class Preprocessor: |
|
|
|
""" |
|
Preprocessing under cv2 conventions. |
|
""" |
|
|
|
def __init__(self): |
|
self.rembg_session = rembg.new_session( |
|
providers=["CUDAExecutionProvider", "CPUExecutionProvider"], |
|
) |
|
|
|
def preprocess(self, image_path: str, save_path: str, rmbg: bool = True, recenter: bool = True, size: int = 512, border_ratio: float = 0.2): |
|
image = self.step_load_to_size(image_path=image_path, size=size*2) |
|
if rmbg: |
|
image = self.step_rembg(image_in=image) |
|
else: |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2BGRA) |
|
if recenter: |
|
image = self.step_recenter(image_in=image, border_ratio=border_ratio, square_size=size) |
|
else: |
|
image = cv2.resize( |
|
src=image, |
|
dsize=(size, size), |
|
interpolation=cv2.INTER_AREA, |
|
) |
|
return cv2.imwrite(save_path, image) |
|
|
|
def step_rembg(self, image_in: np.ndarray) -> np.ndarray: |
|
image_out = rembg.remove( |
|
data=image_in, |
|
session=self.rembg_session, |
|
) |
|
return image_out |
|
|
|
def step_recenter(self, image_in: np.ndarray, border_ratio: float, square_size: int) -> np.ndarray: |
|
assert image_in.shape[-1] == 4, "Image to recenter must be RGBA" |
|
mask = image_in[..., -1] > 0 |
|
ijs = np.nonzero(mask) |
|
|
|
i_min, i_max = ijs[0].min(), ijs[0].max() |
|
j_min, j_max = ijs[1].min(), ijs[1].max() |
|
bbox_height, bbox_width = i_max - i_min, j_max - j_min |
|
|
|
desired_size = int(square_size * (1 - border_ratio)) |
|
scale = desired_size / max(bbox_height, bbox_width) |
|
desired_height, desired_width = int(bbox_height * scale), int(bbox_width * scale) |
|
desired_i_min, desired_j_min = (square_size - desired_height) // 2, (square_size - desired_width) // 2 |
|
desired_i_max, desired_j_max = desired_i_min + desired_height, desired_j_min + desired_width |
|
|
|
image_out = np.zeros((square_size, square_size, 4), dtype=np.uint8) |
|
image_out[desired_i_min:desired_i_max, desired_j_min:desired_j_max] = cv2.resize( |
|
src=image_in[i_min:i_max, j_min:j_max], |
|
dsize=(desired_width, desired_height), |
|
interpolation=cv2.INTER_AREA, |
|
) |
|
return image_out |
|
|
|
def step_load_to_size(self, image_path: str, size: int) -> np.ndarray: |
|
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) |
|
height, width = image.shape[:2] |
|
scale = size / max(height, width) |
|
height, width = int(height * scale), int(width * scale) |
|
image_out = cv2.resize( |
|
src=image, |
|
dsize=(width, height), |
|
interpolation=cv2.INTER_AREA, |
|
) |
|
return image_out |
|
|