|
from functools import partial |
|
import torch |
|
import torch.nn as nn |
|
from typing import Any, Dict, Optional, Tuple, Union |
|
|
|
import torch.nn.functional as F |
|
assert hasattr(F, "scaled_dot_product_attention") |
|
from diffusers.models.attention import Attention, FeedForward |
|
from diffusers.models.attention_processor import CogVideoXAttnProcessor2_0, JointAttnProcessor2_0 |
|
|
|
|
|
|
|
class CogVideoXBlock(nn.Module): |
|
r""" |
|
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model. |
|
|
|
Parameters: |
|
dim (`int`): |
|
The number of channels in the input and output. |
|
num_attention_heads (`int`): |
|
The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): |
|
The number of channels in each head. |
|
time_embed_dim (`int`): |
|
The number of channels in timestep embedding. |
|
dropout (`float`, defaults to `0.0`): |
|
The dropout probability to use. |
|
activation_fn (`str`, defaults to `"gelu-approximate"`): |
|
Activation function to be used in feed-forward. |
|
attention_bias (`bool`, defaults to `False`): |
|
Whether or not to use bias in attention projection layers. |
|
qk_norm (`bool`, defaults to `True`): |
|
Whether or not to use normalization after query and key projections in Attention. |
|
norm_elementwise_affine (`bool`, defaults to `True`): |
|
Whether to use learnable elementwise affine parameters for normalization. |
|
norm_eps (`float`, defaults to `1e-5`): |
|
Epsilon value for normalization layers. |
|
final_dropout (`bool` defaults to `False`): |
|
Whether to apply a final dropout after the last feed-forward layer. |
|
ff_inner_dim (`int`, *optional*, defaults to `None`): |
|
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used. |
|
ff_bias (`bool`, defaults to `True`): |
|
Whether or not to use bias in Feed-forward layer. |
|
attention_out_bias (`bool`, defaults to `True`): |
|
Whether or not to use bias in Attention output projection layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int, |
|
|
|
|
|
|
|
dropout: float = 0.0, |
|
activation_fn: str = "gelu-approximate", |
|
attention_bias: bool = False, |
|
qk_norm: bool = True, |
|
norm_elementwise_affine: bool = True, |
|
eps: float = 1e-5, |
|
|
|
final_dropout: bool = True, |
|
ff_inner_dim: Optional[int] = None, |
|
ff_bias: bool = True, |
|
attention_out_bias: bool = True, |
|
): |
|
super().__init__() |
|
norm_eps = eps |
|
num_attention_heads = num_heads |
|
attention_head_dim = dim // num_attention_heads |
|
assert attention_head_dim * num_attention_heads == dim |
|
|
|
|
|
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps, bias=True) |
|
self.norm1_context = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps, bias=True) |
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
dim_head=attention_head_dim, |
|
heads=num_attention_heads, |
|
qk_norm="layer_norm" if qk_norm else None, |
|
eps=1e-6, |
|
bias=attention_bias, |
|
out_bias=attention_out_bias, |
|
processor=CogVideoXAttnProcessor2_0(), |
|
) |
|
|
|
|
|
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps, bias=True) |
|
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps, bias=True) |
|
|
|
self.ff = FeedForward( |
|
dim, |
|
dropout=dropout, |
|
activation_fn=activation_fn, |
|
final_dropout=final_dropout, |
|
inner_dim=ff_inner_dim, |
|
bias=ff_bias, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
temb: torch.Tensor = None, |
|
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
) -> torch.Tensor: |
|
text_seq_length = encoder_hidden_states.size(1) |
|
|
|
|
|
|
|
|
|
|
|
norm_hidden_states = self.norm1(hidden_states) |
|
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states) |
|
|
|
|
|
|
|
attn_hidden_states, attn_encoder_hidden_states = self.attn1( |
|
hidden_states=norm_hidden_states, |
|
encoder_hidden_states=norm_encoder_hidden_states, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
|
|
hidden_states = hidden_states + attn_hidden_states |
|
encoder_hidden_states = encoder_hidden_states + attn_encoder_hidden_states |
|
|
|
|
|
|
|
|
|
|
|
norm_hidden_states = self.norm2(hidden_states) |
|
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) |
|
|
|
|
|
|
|
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) |
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
hidden_states = hidden_states + ff_output[:, text_seq_length:] |
|
encoder_hidden_states = encoder_hidden_states + ff_output[:, :text_seq_length] |
|
|
|
return hidden_states, encoder_hidden_states |
|
|
|
|
|
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): |
|
|
|
if hidden_states.shape[chunk_dim] % chunk_size != 0: |
|
raise ValueError( |
|
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." |
|
) |
|
|
|
num_chunks = hidden_states.shape[chunk_dim] // chunk_size |
|
ff_output = torch.cat( |
|
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], |
|
dim=chunk_dim, |
|
) |
|
return ff_output |
|
|
|
|
|
class QKNormJointAttnProcessor2_0: |
|
"""Attention processor used typically in processing the SD3-like self-attention projections.""" |
|
|
|
def __init__(self): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
*args, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
residual = hidden_states |
|
|
|
input_ndim = hidden_states.ndim |
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
context_input_ndim = encoder_hidden_states.ndim |
|
if context_input_ndim == 4: |
|
batch_size, channel, height, width = encoder_hidden_states.shape |
|
encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size = encoder_hidden_states.shape[0] |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
|
|
|
|
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) |
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
|
|
|
|
query = torch.cat([query, encoder_hidden_states_query_proj], dim=1) |
|
key = torch.cat([key, encoder_hidden_states_key_proj], dim=1) |
|
value = torch.cat([value, encoder_hidden_states_value_proj], dim=1) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) |
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states, encoder_hidden_states = ( |
|
hidden_states[:, : residual.shape[1]], |
|
hidden_states[:, residual.shape[1] :], |
|
) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
if not attn.context_pre_only: |
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
if context_input_ndim == 4: |
|
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
return hidden_states, encoder_hidden_states |
|
|
|
|
|
class SD3JointTransformerBlock(nn.Module): |
|
r""" |
|
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. |
|
|
|
Reference: https://arxiv.org/abs/2403.03206 |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the |
|
processing of `context` conditions. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int, |
|
eps: float, |
|
|
|
|
|
context_pre_only: bool = False, |
|
qk_norm: Optional[str] = None, |
|
use_dual_attention: bool = False, |
|
): |
|
super().__init__() |
|
num_attention_heads = num_heads |
|
attention_head_dim = dim // num_attention_heads |
|
assert attention_head_dim * num_attention_heads == dim |
|
|
|
self.use_dual_attention = use_dual_attention |
|
self.context_pre_only = context_pre_only |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.norm1 = nn.LayerNorm(dim) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.norm1_context = nn.LayerNorm(dim) |
|
|
|
processor = JointAttnProcessor2_0() |
|
|
|
self.attn = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=None, |
|
added_kv_proj_dim=dim, |
|
dim_head=attention_head_dim, |
|
heads=num_attention_heads, |
|
out_dim=dim, |
|
context_pre_only=context_pre_only, |
|
bias=True, |
|
processor=processor, |
|
qk_norm=qk_norm, |
|
eps=eps, |
|
) |
|
|
|
if use_dual_attention: |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=None, |
|
dim_head=attention_head_dim, |
|
heads=num_attention_heads, |
|
out_dim=dim, |
|
bias=True, |
|
processor=processor, |
|
qk_norm=qk_norm, |
|
eps=eps, |
|
) |
|
else: |
|
self.attn2 = None |
|
|
|
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) |
|
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") |
|
|
|
if not context_pre_only: |
|
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) |
|
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") |
|
else: |
|
self.norm2_context = None |
|
self.ff_context = None |
|
|
|
|
|
self._chunk_size = None |
|
self._chunk_dim = 0 |
|
|
|
|
|
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): |
|
|
|
self._chunk_size = chunk_size |
|
self._chunk_dim = dim |
|
|
|
def forward( |
|
self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor=None |
|
): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
norm_hidden_states = self.norm1(hidden_states) |
|
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states) |
|
|
|
|
|
attn_output, context_attn_output = self.attn( |
|
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states |
|
) |
|
|
|
|
|
|
|
hidden_states = hidden_states + attn_output |
|
|
|
if self.use_dual_attention: |
|
attn_output2 = self.attn2(hidden_states=norm_hidden_states) |
|
|
|
hidden_states = hidden_states + attn_output2 |
|
|
|
norm_hidden_states = self.norm2(hidden_states) |
|
|
|
if self._chunk_size is not None: |
|
|
|
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) |
|
else: |
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
|
|
hidden_states = hidden_states + ff_output |
|
|
|
|
|
if self.context_pre_only: |
|
encoder_hidden_states = None |
|
else: |
|
|
|
encoder_hidden_states = encoder_hidden_states + context_attn_output |
|
|
|
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) |
|
|
|
if self._chunk_size is not None: |
|
|
|
context_ff_output = _chunked_feed_forward( |
|
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size |
|
) |
|
else: |
|
context_ff_output = self.ff_context(norm_encoder_hidden_states) |
|
|
|
encoder_hidden_states = encoder_hidden_states + context_ff_output |
|
|
|
return hidden_states, encoder_hidden_states |