|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
import torch |
|
import torch.nn as nn |
|
from accelerate.logging import get_logger |
|
from typing import Any, Dict, Optional, Tuple, Union |
|
from diffusers.utils import is_torch_version |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
class TransformerDecoder(nn.Module): |
|
|
|
""" |
|
Transformer blocks that process the input and optionally use condition and modulation. |
|
""" |
|
|
|
def __init__(self, block_type: str, |
|
num_layers: int, num_heads: int, |
|
inner_dim: int, cond_dim: int = None, mod_dim: int = None, |
|
gradient_checkpointing=False, |
|
eps: float = 1e-6, |
|
use_dual_attention: bool = False,): |
|
super().__init__() |
|
self.gradient_checkpointing = gradient_checkpointing |
|
self.block_type = block_type |
|
if block_type == "sd3_cond": |
|
|
|
dual_attention_layers = [] |
|
self.layers = nn.ModuleList([ |
|
self._block_fn(inner_dim, cond_dim, mod_dim)( |
|
num_heads=num_heads, |
|
eps=eps, |
|
context_pre_only=i == num_layers - 1, |
|
use_dual_attention=use_dual_attention, |
|
) |
|
for i in range(num_layers) |
|
]) |
|
else: |
|
self.layers = nn.ModuleList([ |
|
self._block_fn(inner_dim, cond_dim, mod_dim)( |
|
num_heads=num_heads, |
|
eps=eps, |
|
) |
|
for _ in range(num_layers) |
|
]) |
|
|
|
|
|
self.norm = nn.LayerNorm(inner_dim, eps=eps) |
|
|
|
if self.block_type in ["cogvideo_cond", "sd3_cond"]: |
|
self.linear_cond_proj = nn.Linear(cond_dim, inner_dim) |
|
|
|
@property |
|
def block_type(self): |
|
return self._block_type |
|
|
|
@block_type.setter |
|
def block_type(self, block_type): |
|
assert block_type in ['basic', 'cond', 'mod', 'cond_mod', 'sd3_cond', 'cogvideo_cond'], \ |
|
f"Unsupported block type: {block_type}" |
|
self._block_type = block_type |
|
|
|
def _block_fn(self, inner_dim, cond_dim, mod_dim): |
|
assert inner_dim is not None, f"inner_dim must always be specified" |
|
if self.block_type == 'basic': |
|
assert cond_dim is None and mod_dim is None, \ |
|
f"Condition and modulation are not supported for BasicBlock" |
|
from .block import BasicBlock |
|
|
|
return partial(BasicBlock, inner_dim=inner_dim) |
|
elif self.block_type == 'cond': |
|
assert cond_dim is not None, f"Condition dimension must be specified for ConditionBlock" |
|
assert mod_dim is None, f"Modulation dimension is not supported for ConditionBlock" |
|
from .block import ConditionBlock |
|
|
|
return partial(ConditionBlock, inner_dim=inner_dim, cond_dim=cond_dim) |
|
elif self.block_type == 'mod': |
|
|
|
raise NotImplementedError(f"modulation without condition is not implemented") |
|
elif self.block_type == 'cond_mod': |
|
assert cond_dim is not None and mod_dim is not None, \ |
|
f"Condition and modulation dimensions must be specified for ConditionModulationBlock" |
|
from .block import ConditionModulationBlock |
|
|
|
return partial(ConditionModulationBlock, inner_dim=inner_dim, cond_dim=cond_dim, mod_dim=mod_dim) |
|
elif self.block_type == 'cogvideo_cond': |
|
|
|
from lam.models.transformer_dit import CogVideoXBlock |
|
|
|
return partial(CogVideoXBlock, dim=inner_dim, attention_bias=True) |
|
elif self.block_type == 'sd3_cond': |
|
|
|
from lam.models.transformer_dit import SD3JointTransformerBlock |
|
return partial(SD3JointTransformerBlock, dim=inner_dim, qk_norm="rms_norm") |
|
else: |
|
raise ValueError(f"Unsupported block type during runtime: {self.block_type}") |
|
|
|
def assert_runtime_integrity(self, x: torch.Tensor, cond: torch.Tensor, mod: torch.Tensor): |
|
assert x is not None, f"Input tensor must be specified" |
|
if self.block_type == 'basic': |
|
assert cond is None and mod is None, \ |
|
f"Condition and modulation are not supported for BasicBlock" |
|
elif 'cond' in self.block_type: |
|
assert cond is not None and mod is None, \ |
|
f"Condition must be specified and modulation is not supported for ConditionBlock" |
|
elif self.block_type == 'mod': |
|
raise NotImplementedError(f"modulation without condition is not implemented") |
|
else: |
|
assert cond is not None and mod is not None, \ |
|
f"Condition and modulation must be specified for ConditionModulationBlock" |
|
|
|
def forward_layer(self, layer: nn.Module, x: torch.Tensor, cond: torch.Tensor, mod: torch.Tensor): |
|
if self.block_type == 'basic': |
|
return layer(x) |
|
elif self.block_type == 'cond': |
|
return layer(x, cond) |
|
elif self.block_type == 'mod': |
|
return layer(x, mod) |
|
else: |
|
return layer(x, cond, mod) |
|
|
|
def forward(self, x: torch.Tensor, cond: torch.Tensor = None, mod: torch.Tensor = None): |
|
|
|
|
|
|
|
self.assert_runtime_integrity(x, cond, mod) |
|
|
|
if self.block_type in ["cogvideo_cond", "sd3_cond"]: |
|
cond = self.linear_cond_proj(cond) |
|
for layer in self.layers: |
|
if self.training and self.gradient_checkpointing: |
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
return custom_forward |
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
x, cond = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer), |
|
x, |
|
cond, |
|
**ckpt_kwargs, |
|
) |
|
else: |
|
x, cond = layer( |
|
hidden_states=x, |
|
encoder_hidden_states=cond, |
|
temb=None, |
|
|
|
) |
|
x = self.norm(x) |
|
else: |
|
for layer in self.layers: |
|
x = self.forward_layer(layer, x, cond, mod) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
|
|
|