LAM / lam /models /modeling_lam.py
yuandong513
feat: init
17cd746
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import math
from collections import defaultdict
import numpy as np
import torch
import torch.nn as nn
from accelerate.logging import get_logger
from einops import rearrange, repeat
from .transformer import TransformerDecoder
from lam.models.rendering.gs_renderer import GS3DRenderer, PointEmbed
from diffusers.utils import is_torch_version
logger = get_logger(__name__)
class ModelLAM(nn.Module):
"""
Full model of the basic single-view large reconstruction model.
"""
def __init__(self,
transformer_dim: int, transformer_layers: int, transformer_heads: int,
transformer_type="cond",
tf_grad_ckpt=False,
encoder_grad_ckpt=False,
encoder_freeze: bool = True, encoder_type: str = 'dino',
encoder_model_name: str = 'facebook/dino-vitb16', encoder_feat_dim: int = 768,
num_pcl: int=2048, pcl_dim: int=512,
human_model_path=None,
flame_subdivide_num=2,
flame_type="flame",
gs_query_dim=None,
gs_use_rgb=False,
gs_sh=3,
gs_mlp_network_config=None,
gs_xyz_offset_max_step=1.8 / 32,
gs_clip_scaling=0.2,
shape_param_dim=100,
expr_param_dim=50,
fix_opacity=False,
fix_rotation=False,
flame_scale=1.0,
**kwargs,
):
super().__init__()
self.gradient_checkpointing = tf_grad_ckpt
self.encoder_gradient_checkpointing = encoder_grad_ckpt
# attributes
self.encoder_feat_dim = encoder_feat_dim
self.conf_use_pred_img = False
self.conf_cat_feat = False and self.conf_use_pred_img # True # False
# modules
# image encoder
self.encoder = self._encoder_fn(encoder_type)(
model_name=encoder_model_name,
freeze=encoder_freeze,
encoder_feat_dim=encoder_feat_dim,
)
# learnable points embedding
skip_decoder = False
self.latent_query_points_type = kwargs.get("latent_query_points_type", "e2e_flame")
if self.latent_query_points_type == "embedding":
self.num_pcl = num_pcl
self.pcl_embeddings = nn.Embedding(num_pcl , pcl_dim)
elif self.latent_query_points_type.startswith("flame"):
latent_query_points_file = os.path.join(human_model_path, "flame_points", f"{self.latent_query_points_type}.npy")
pcl_embeddings = torch.from_numpy(np.load(latent_query_points_file)).float()
print(f"==========load flame points:{latent_query_points_file}, shape:{pcl_embeddings.shape}")
self.register_buffer("pcl_embeddings", pcl_embeddings)
self.pcl_embed = PointEmbed(dim=pcl_dim)
elif self.latent_query_points_type.startswith("e2e_flame"):
skip_decoder = True
self.pcl_embed = PointEmbed(dim=pcl_dim)
else:
raise NotImplementedError
print("==="*16*3, f"\nskip_decoder: {skip_decoder}", "\n"+"==="*16*3)
# transformer
self.transformer = TransformerDecoder(
block_type=transformer_type,
num_layers=transformer_layers, num_heads=transformer_heads,
inner_dim=transformer_dim, cond_dim=encoder_feat_dim, mod_dim=None,
gradient_checkpointing=self.gradient_checkpointing,
)
# renderer
self.renderer = GS3DRenderer(human_model_path=human_model_path,
subdivide_num=flame_subdivide_num,
smpl_type=flame_type,
feat_dim=transformer_dim,
query_dim=gs_query_dim,
use_rgb=gs_use_rgb,
sh_degree=gs_sh,
mlp_network_config=gs_mlp_network_config,
xyz_offset_max_step=gs_xyz_offset_max_step,
clip_scaling=gs_clip_scaling,
scale_sphere=kwargs.get("scale_sphere", False),
shape_param_dim=shape_param_dim,
expr_param_dim=expr_param_dim,
fix_opacity=fix_opacity,
fix_rotation=fix_rotation,
skip_decoder=skip_decoder,
decode_with_extra_info=kwargs.get("decode_with_extra_info", None),
gradient_checkpointing=self.gradient_checkpointing,
add_teeth=kwargs.get("add_teeth", True),
teeth_bs_flag=kwargs.get("teeth_bs_flag", False),
oral_mesh_flag=kwargs.get("oral_mesh_flag", False),
use_mesh_shading=kwargs.get('use_mesh_shading', False),
render_rgb=kwargs.get("render_rgb", True),
)
def get_last_layer(self):
return self.renderer.gs_net.out_layers["shs"].weight
@staticmethod
def _encoder_fn(encoder_type: str):
encoder_type = encoder_type.lower()
assert encoder_type in ['dino', 'dinov2', 'dinov2_unet', 'resunet', 'dinov2_featup', 'dinov2_dpt', 'dinov2_fusion'], "Unsupported encoder type"
if encoder_type == 'dino':
from .encoders.dino_wrapper import DinoWrapper
# logger.info("Using DINO as the encoder")
return DinoWrapper
elif encoder_type == 'dinov2':
from .encoders.dinov2_wrapper import Dinov2Wrapper
# logger.info("Using DINOv2 as the encoder")
return Dinov2Wrapper
elif encoder_type == 'dinov2_unet':
from .encoders.dinov2_unet_wrapper import Dinov2UnetWrapper
# logger.info("Using Dinov2Unet as the encoder")
return Dinov2UnetWrapper
elif encoder_type == 'resunet':
from .encoders.xunet_wrapper import XnetWrapper
# logger.info("Using XnetWrapper as the encoder")
return XnetWrapper
elif encoder_type == 'dinov2_featup':
from .encoders.dinov2_featup_wrapper import Dinov2FeatUpWrapper
# logger.info("Using Dinov2FeatUpWrapper as the encoder")
return Dinov2FeatUpWrapper
elif encoder_type == 'dinov2_dpt':
from .encoders.dinov2_dpt_wrapper import Dinov2DPTWrapper
# logger.info("Using Dinov2DPTWrapper as the encoder")
return Dinov2DPTWrapper
elif encoder_type == 'dinov2_fusion':
from .encoders.dinov2_fusion_wrapper import Dinov2FusionWrapper
# logger.info("Using Dinov2FusionWrapper as the encoder")
return Dinov2FusionWrapper
def forward_transformer(self, image_feats, camera_embeddings, query_points, query_feats=None):
# assert image_feats.shape[0] == camera_embeddings.shape[0], \
# "Batch size mismatch for image_feats and camera_embeddings!"
B = image_feats.shape[0]
if self.latent_query_points_type == "embedding":
range_ = torch.arange(self.num_pcl, device=image_feats.device)
x = self.pcl_embeddings(range_).unsqueeze(0).repeat((B, 1, 1)) # [B, L, D]
elif self.latent_query_points_type.startswith("flame"):
x = self.pcl_embed(self.pcl_embeddings.unsqueeze(0)).repeat((B, 1, 1)) # [B, L, D]
elif self.latent_query_points_type.startswith("e2e_flame"):
x = self.pcl_embed(query_points) # [B, L, D]
x = x.to(image_feats.dtype)
if query_feats is not None:
x = x + query_feats.to(image_feats.dtype)
x = self.transformer(
x,
cond=image_feats,
mod=camera_embeddings,
) # [B, L, D]
# x = x.to(image_feats.dtype)
return x
def forward_encode_image(self, image):
# encode image
if self.training and self.encoder_gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
image_feats = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.encoder),
image,
**ckpt_kwargs,
)
else:
image_feats = self.encoder(image)
return image_feats
@torch.compile
def forward_latent_points(self, image, camera, query_points=None, additional_features=None):
# image: [B, C_img, H_img, W_img]
# camera: [B, D_cam_raw]
B = image.shape[0]
# encode image
image_feats = self.forward_encode_image(image)
assert image_feats.shape[-1] == self.encoder_feat_dim, \
f"Feature dimension mismatch: {image_feats.shape[-1]} vs {self.encoder_feat_dim}"
if additional_features is not None and len(additional_features.keys()) > 0:
image_feats_bchw = rearrange(image_feats, "b (h w) c -> b c h w", h=int(math.sqrt(image_feats.shape[1])))
additional_features["source_image_feats"] = image_feats_bchw
proj_feats = self.renderer.get_batch_project_feats(None, query_points, additional_features=additional_features, feat_nms=['source_image_feats'], use_mesh=True)
query_feats = proj_feats['source_image_feats']
else:
query_feats = None
# # embed camera
# camera_embeddings = self.camera_embedder(camera)
# assert camera_embeddings.shape[-1] == self.camera_embed_dim, \
# f"Feature dimension mismatch: {camera_embeddings.shape[-1]} vs {self.camera_embed_dim}"
# transformer generating latent points
tokens = self.forward_transformer(image_feats, camera_embeddings=None, query_points=query_points, query_feats=query_feats)
return tokens, image_feats
def forward(self, image, source_c2ws, source_intrs, render_c2ws, render_intrs, render_bg_colors, flame_params, source_flame_params=None, render_images=None, data=None):
# image: [B, N_ref, C_img, H_img, W_img]
# source_c2ws: [B, N_ref, 4, 4]
# source_intrs: [B, N_ref, 4, 4]
# render_c2ws: [B, N_source, 4, 4]
# render_intrs: [B, N_source, 4, 4]
# render_bg_colors: [B, N_source, 3]
# flame_params: Dict, e.g., pose_shape: [B, N_source, 21, 3], betas:[B, 100]
assert image.shape[0] == render_c2ws.shape[0], "Batch size mismatch for image and render_c2ws"
assert image.shape[0] == render_bg_colors.shape[0], "Batch size mismatch for image and render_bg_colors"
assert image.shape[0] == flame_params["betas"].shape[0], "Batch size mismatch for image and flame_params"
assert image.shape[0] == flame_params["expr"].shape[0], "Batch size mismatch for image and flame_params"
assert len(flame_params["betas"].shape) == 2
render_h, render_w = int(render_intrs[0, 0, 1, 2] * 2), int(render_intrs[0, 0, 0, 2] * 2)
query_points = None
if self.latent_query_points_type.startswith("e2e_flame"):
query_points, flame_params = self.renderer.get_query_points(flame_params,
device=image.device)
additional_features = {}
latent_points, image_feats = self.forward_latent_points(image[:, 0], camera=None, query_points=query_points, additional_features=additional_features) # [B, N, C]
additional_features.update({
"image_feats": image_feats, "image": image[:, 0],
})
image_feats_bchw = rearrange(image_feats, "b (h w) c -> b c h w", h=int(math.sqrt(image_feats.shape[1])))
additional_features["image_feats_bchw"] = image_feats_bchw
# render target views
render_results = self.renderer(gs_hidden_features=latent_points,
query_points=query_points,
flame_data=flame_params,
c2w=render_c2ws,
intrinsic=render_intrs,
height=render_h,
width=render_w,
background_color=render_bg_colors,
additional_features=additional_features
)
N, M = render_c2ws.shape[:2]
assert render_results['comp_rgb'].shape[0] in [N, N], "Batch size mismatch for render_results"
assert render_results['comp_rgb'].shape[1] in [M, M*2], "Number of rendered views should be consistent with render_cameras"
if self.use_conf_map:
b, v = render_images.shape[:2]
if self.conf_use_pred_img:
render_images = repeat(render_images, "b v c h w -> (b v r) c h w", r=2)
pred_images = rearrange(render_results['comp_rgb'].detach().clone(), "b v c h w -> (b v) c h w")
else:
render_images = rearrange(render_images, "b v c h w -> (b v) c h w")
pred_images = None
conf_sigma_l1, conf_sigma_percl = self.conf_net(render_images, pred_images) # Bx2xHxW
conf_sigma_l1 = rearrange(conf_sigma_l1, "(b v) c h w -> b v c h w", b=b, v=v)
conf_sigma_percl = rearrange(conf_sigma_percl, "(b v) c h w -> b v c h w", b=b, v=v)
conf_dict = {
"conf_sigma_l1": conf_sigma_l1,
"conf_sigma_percl": conf_sigma_percl,
}
else:
conf_dict = {}
# self.conf_sigma_l1 = conf_sigma_l1[:,:1]
# self.conf_sigma_l1_flip = conf_sigma_l1[:,1:]
# self.conf_sigma_percl = conf_sigma_percl[:,:1]
# self.conf_sigma_percl_flip = conf_sigma_percl[:,1:]
return {
'latent_points': latent_points,
**render_results,
**conf_dict,
}
@torch.no_grad()
def infer_single_view(self, image, source_c2ws, source_intrs, render_c2ws,
render_intrs, render_bg_colors, flame_params):
# image: [B, N_ref, C_img, H_img, W_img]
# source_c2ws: [B, N_ref, 4, 4]
# source_intrs: [B, N_ref, 4, 4]
# render_c2ws: [B, N_source, 4, 4]
# render_intrs: [B, N_source, 4, 4]
# render_bg_colors: [B, N_source, 3]
# flame_params: Dict, e.g., pose_shape: [B, N_source, 21, 3], betas:[B, 100]
assert image.shape[0] == render_c2ws.shape[0], "Batch size mismatch for image and render_c2ws"
assert image.shape[0] == render_bg_colors.shape[0], "Batch size mismatch for image and render_bg_colors"
assert image.shape[0] == flame_params["betas"].shape[0], "Batch size mismatch for image and flame_params"
assert image.shape[0] == flame_params["expr"].shape[0], "Batch size mismatch for image and flame_params"
assert len(flame_params["betas"].shape) == 2
render_h, render_w = int(render_intrs[0, 0, 1, 2] * 2), int(render_intrs[0, 0, 0, 2] * 2)
assert image.shape[0] == 1
num_views = render_c2ws.shape[1]
query_points = None
if self.latent_query_points_type.startswith("e2e_flame"):
query_points, flame_params = self.renderer.get_query_points(flame_params,
device=image.device)
latent_points, image_feats = self.forward_latent_points(image[:, 0], camera=None, query_points=query_points) # [B, N, C]
image_feats_bchw = rearrange(image_feats, "b (h w) c -> b c h w", h=int(math.sqrt(image_feats.shape[1])))
gs_model_list, query_points, flame_params, _ = self.renderer.forward_gs(gs_hidden_features=latent_points,
query_points=query_points,
flame_data=flame_params,
additional_features={"image_feats": image_feats, "image": image[:, 0], "image_feats_bchw": image_feats_bchw})
render_res_list = []
for view_idx in range(num_views):
render_res = self.renderer.forward_animate_gs(gs_model_list,
query_points,
self.renderer.get_single_view_smpl_data(flame_params, view_idx),
render_c2ws[:, view_idx:view_idx+1],
render_intrs[:, view_idx:view_idx+1],
render_h,
render_w,
render_bg_colors[:, view_idx:view_idx+1])
render_res_list.append(render_res)
out = defaultdict(list)
for res in render_res_list:
for k, v in res.items():
out[k].append(v)
for k, v in out.items():
# print(f"out key:{k}")
if isinstance(v[0], torch.Tensor):
out[k] = torch.concat(v, dim=1)
if k in ["comp_rgb", "comp_mask", "comp_depth"]:
out[k] = out[k][0].permute(0, 2, 3, 1) # [1, Nv, 3, H, W] -> [Nv, 3, H, W] - > [Nv, H, W, 3]
else:
out[k] = v
out['cano_gs_lst'] = gs_model_list
return out