|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch.nn as nn |
|
|
|
from .modulate import ModLN |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
""" |
|
Transformer block that is in its simplest form. |
|
Designed for PF-LRM architecture. |
|
""" |
|
|
|
def __init__(self, inner_dim: int, num_heads: int, eps: float, |
|
attn_drop: float = 0., attn_bias: bool = False, |
|
mlp_ratio: float = 4., mlp_drop: float = 0.): |
|
super().__init__() |
|
self.norm1 = nn.LayerNorm(inner_dim, eps=eps) |
|
self.self_attn = nn.MultiheadAttention( |
|
embed_dim=inner_dim, num_heads=num_heads, |
|
dropout=attn_drop, bias=attn_bias, batch_first=True) |
|
self.norm2 = nn.LayerNorm(inner_dim, eps=eps) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(inner_dim, int(inner_dim * mlp_ratio)), |
|
nn.GELU(), |
|
nn.Dropout(mlp_drop), |
|
nn.Linear(int(inner_dim * mlp_ratio), inner_dim), |
|
nn.Dropout(mlp_drop), |
|
) |
|
|
|
def forward(self, x): |
|
|
|
before_sa = self.norm1(x) |
|
x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0] |
|
x = x + self.mlp(self.norm2(x)) |
|
return x |
|
|
|
|
|
class ConditionBlock(nn.Module): |
|
""" |
|
Transformer block that takes in a cross-attention condition. |
|
Designed for SparseLRM architecture. |
|
""" |
|
|
|
def __init__(self, inner_dim: int, cond_dim: int, num_heads: int, eps: float, |
|
attn_drop: float = 0., attn_bias: bool = False, |
|
mlp_ratio: float = 4., mlp_drop: float = 0.): |
|
super().__init__() |
|
self.norm1 = nn.LayerNorm(inner_dim, eps=eps) |
|
self.cross_attn = nn.MultiheadAttention( |
|
embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim, |
|
dropout=attn_drop, bias=attn_bias, batch_first=True) |
|
self.norm2 = nn.LayerNorm(inner_dim, eps=eps) |
|
self.self_attn = nn.MultiheadAttention( |
|
embed_dim=inner_dim, num_heads=num_heads, |
|
dropout=attn_drop, bias=attn_bias, batch_first=True) |
|
self.norm3 = nn.LayerNorm(inner_dim, eps=eps) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(inner_dim, int(inner_dim * mlp_ratio)), |
|
nn.GELU(), |
|
nn.Dropout(mlp_drop), |
|
nn.Linear(int(inner_dim * mlp_ratio), inner_dim), |
|
nn.Dropout(mlp_drop), |
|
) |
|
|
|
def forward(self, x, cond): |
|
|
|
|
|
x = x + self.cross_attn(self.norm1(x), cond, cond, need_weights=False)[0] |
|
before_sa = self.norm2(x) |
|
x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0] |
|
x = x + self.mlp(self.norm3(x)) |
|
return x |
|
|
|
|
|
class ConditionModulationBlock(nn.Module): |
|
""" |
|
Transformer block that takes in a cross-attention condition and another modulation vector applied to sub-blocks. |
|
Designed for raw LRM architecture. |
|
""" |
|
|
|
def __init__(self, inner_dim: int, cond_dim: int, mod_dim: int, num_heads: int, eps: float, |
|
attn_drop: float = 0., attn_bias: bool = False, |
|
mlp_ratio: float = 4., mlp_drop: float = 0.): |
|
super().__init__() |
|
self.norm1 = ModLN(inner_dim, mod_dim, eps) |
|
self.cross_attn = nn.MultiheadAttention( |
|
embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim, |
|
dropout=attn_drop, bias=attn_bias, batch_first=True) |
|
self.norm2 = ModLN(inner_dim, mod_dim, eps) |
|
self.self_attn = nn.MultiheadAttention( |
|
embed_dim=inner_dim, num_heads=num_heads, |
|
dropout=attn_drop, bias=attn_bias, batch_first=True) |
|
self.norm3 = ModLN(inner_dim, mod_dim, eps) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(inner_dim, int(inner_dim * mlp_ratio)), |
|
nn.GELU(), |
|
nn.Dropout(mlp_drop), |
|
nn.Linear(int(inner_dim * mlp_ratio), inner_dim), |
|
nn.Dropout(mlp_drop), |
|
) |
|
|
|
def forward(self, x, cond, mod): |
|
|
|
|
|
|
|
x = x + self.cross_attn(self.norm1(x, mod), cond, cond, need_weights=False)[0] |
|
before_sa = self.norm2(x, mod) |
|
x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0] |
|
x = x + self.mlp(self.norm3(x, mod)) |
|
return x |
|
|