|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from functools import partial |
|
import torch |
|
|
|
__all__ = ['MixerDataset'] |
|
|
|
|
|
class MixerDataset(torch.utils.data.Dataset): |
|
|
|
def __init__(self, |
|
split: str, |
|
subsets: dict, |
|
**dataset_kwargs, |
|
): |
|
subsets = [e for e in subsets if e["meta_path"][split] is not None] |
|
self.subsets = [ |
|
self._dataset_fn(subset, split)(**dataset_kwargs) |
|
for subset in subsets |
|
] |
|
self.virtual_lens = [ |
|
math.ceil(subset_config['sample_rate'] * len(subset_obj)) |
|
for subset_config, subset_obj in zip(subsets, self.subsets) |
|
] |
|
|
|
@staticmethod |
|
def _dataset_fn(subset_config: dict, split: str): |
|
name = subset_config['name'] |
|
|
|
dataset_cls = None |
|
if name == "exavatar": |
|
from .exavatar import ExAvatarDataset |
|
dataset_cls = ExAvatarDataset |
|
elif name == "humman": |
|
from .humman import HuMManDataset |
|
dataset_cls = HuMManDataset |
|
elif name == "humman_ori": |
|
from .humman_ori import HuMManOriDataset |
|
dataset_cls = HuMManOriDataset |
|
elif name == "static_human": |
|
from .static_human import StaticHumanDataset |
|
dataset_cls = StaticHumanDataset |
|
elif name == "singleview_human": |
|
from .singleview_human import SingleViewHumanDataset |
|
dataset_cls = SingleViewHumanDataset |
|
elif name == "singleview_square_human": |
|
from .singleview_square_human import SingleViewSquareHumanDataset |
|
dataset_cls = SingleViewSquareHumanDataset |
|
elif name == "bedlam": |
|
from .bedlam import BedlamDataset |
|
dataset_cls = BedlamDataset |
|
elif name == "dna_human": |
|
from .dna import DNAHumanDataset |
|
dataset_cls = DNAHumanDataset |
|
elif name == "video_human": |
|
from .video_human import VideoHumanDataset |
|
dataset_cls = VideoHumanDataset |
|
elif name == "video_head": |
|
from .video_head import VideoHeadDataset |
|
dataset_cls = VideoHeadDataset |
|
elif name == "video_head_gagtrack": |
|
from .video_head_gagtrack import VideoHeadGagDataset |
|
dataset_cls = VideoHeadGagDataset |
|
elif name == "objaverse": |
|
from .objaverse import ObjaverseDataset |
|
dataset_cls = ObjaverseDataset |
|
|
|
|
|
|
|
else: |
|
raise NotImplementedError(f"Dataset {name} not implemented") |
|
print("==="*16*3, "\nUse dataset loader:", name, "\n"+"==="*3*16) |
|
|
|
return partial( |
|
dataset_cls, |
|
root_dirs=subset_config['root_dirs'], |
|
meta_path=subset_config['meta_path'][split], |
|
) |
|
|
|
def __len__(self): |
|
return sum(self.virtual_lens) |
|
|
|
def __getitem__(self, idx): |
|
subset_idx = 0 |
|
virtual_idx = idx |
|
while virtual_idx >= self.virtual_lens[subset_idx]: |
|
virtual_idx -= self.virtual_lens[subset_idx] |
|
subset_idx += 1 |
|
real_idx = virtual_idx % len(self.subsets[subset_idx]) |
|
return self.subsets[subset_idx][real_idx] |
|
|