Spaces:
Running
on
Zero
Running
on
Zero
# | |
# Toyota Motor Europe NV/SA and its affiliated companies retain all intellectual | |
# property and proprietary rights in and to this software and related documentation. | |
# Any commercial use, reproduction, disclosure or distribution of this software and | |
# related documentation without an express license agreement from Toyota Motor Europe NV/SA | |
# is strictly prohibited. | |
# | |
from tqdm import tqdm | |
import copy | |
import argparse | |
import torch | |
import math | |
import cv2 | |
import numpy as np | |
import dlib | |
from star.lib import utility | |
from star.asset import predictor_path, model_path | |
from vhap.util.log import get_logger | |
logger = get_logger(__name__) | |
class GetCropMatrix(): | |
""" | |
from_shape -> transform_matrix | |
""" | |
def __init__(self, image_size, target_face_scale, align_corners=False): | |
self.image_size = image_size | |
self.target_face_scale = target_face_scale | |
self.align_corners = align_corners | |
def _compose_rotate_and_scale(self, angle, scale, shift_xy, from_center, to_center): | |
cosv = math.cos(angle) | |
sinv = math.sin(angle) | |
fx, fy = from_center | |
tx, ty = to_center | |
acos = scale * cosv | |
asin = scale * sinv | |
a0 = acos | |
a1 = -asin | |
a2 = tx - acos * fx + asin * fy + shift_xy[0] | |
b0 = asin | |
b1 = acos | |
b2 = ty - asin * fx - acos * fy + shift_xy[1] | |
rot_scale_m = np.array([ | |
[a0, a1, a2], | |
[b0, b1, b2], | |
[0.0, 0.0, 1.0] | |
], np.float32) | |
return rot_scale_m | |
def process(self, scale, center_w, center_h): | |
if self.align_corners: | |
to_w, to_h = self.image_size - 1, self.image_size - 1 | |
else: | |
to_w, to_h = self.image_size, self.image_size | |
rot_mu = 0 | |
scale_mu = self.image_size / (scale * self.target_face_scale * 200.0) | |
shift_xy_mu = (0, 0) | |
matrix = self._compose_rotate_and_scale( | |
rot_mu, scale_mu, shift_xy_mu, | |
from_center=[center_w, center_h], | |
to_center=[to_w / 2.0, to_h / 2.0]) | |
return matrix | |
class TransformPerspective(): | |
""" | |
image, matrix3x3 -> transformed_image | |
""" | |
def __init__(self, image_size): | |
self.image_size = image_size | |
def process(self, image, matrix): | |
return cv2.warpPerspective( | |
image, matrix, dsize=(self.image_size, self.image_size), | |
flags=cv2.INTER_LINEAR, borderValue=0) | |
class TransformPoints2D(): | |
""" | |
points (nx2), matrix (3x3) -> points (nx2) | |
""" | |
def process(self, srcPoints, matrix): | |
# nx3 | |
desPoints = np.concatenate([srcPoints, np.ones_like(srcPoints[:, [0]])], axis=1) | |
desPoints = desPoints @ np.transpose(matrix) # nx3 | |
desPoints = desPoints[:, :2] / desPoints[:, [2, 2]] | |
return desPoints.astype(srcPoints.dtype) | |
class Alignment: | |
def __init__(self, args, model_path, dl_framework, device_ids): | |
self.input_size = 256 | |
self.target_face_scale = 1.0 | |
self.dl_framework = dl_framework | |
# model | |
if self.dl_framework == "pytorch": | |
# conf | |
self.config = utility.get_config(args) | |
self.config.device_id = device_ids[0] | |
# set environment | |
utility.set_environment(self.config) | |
self.config.init_instance() | |
if self.config.logger is not None: | |
self.config.logger.info("Loaded configure file %s: %s" % (args.config_name, self.config.id)) | |
self.config.logger.info("\n" + "\n".join(["%s: %s" % item for item in self.config.__dict__.items()])) | |
net = utility.get_net(self.config) | |
if device_ids == [-1]: | |
checkpoint = torch.load(model_path, map_location="cpu") | |
else: | |
checkpoint = torch.load(model_path) | |
net.load_state_dict(checkpoint["net"]) | |
net = net.to(self.config.device_id) | |
net.eval() | |
self.alignment = net | |
else: | |
assert False | |
self.getCropMatrix = GetCropMatrix(image_size=self.input_size, target_face_scale=self.target_face_scale, | |
align_corners=True) | |
self.transformPerspective = TransformPerspective(image_size=self.input_size) | |
self.transformPoints2D = TransformPoints2D() | |
def norm_points(self, points, align_corners=False): | |
if align_corners: | |
# [0, SIZE-1] -> [-1, +1] | |
return points / torch.tensor([self.input_size - 1, self.input_size - 1]).to(points).view(1, 1, 2) * 2 - 1 | |
else: | |
# [-0.5, SIZE-0.5] -> [-1, +1] | |
return (points * 2 + 1) / torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1 | |
def denorm_points(self, points, align_corners=False): | |
if align_corners: | |
# [-1, +1] -> [0, SIZE-1] | |
return (points + 1) / 2 * torch.tensor([self.input_size - 1, self.input_size - 1]).to(points).view(1, 1, 2) | |
else: | |
# [-1, +1] -> [-0.5, SIZE-0.5] | |
return ((points + 1) * torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1) / 2 | |
def preprocess(self, image, scale, center_w, center_h): | |
matrix = self.getCropMatrix.process(scale, center_w, center_h) | |
input_tensor = self.transformPerspective.process(image, matrix) | |
input_tensor = input_tensor[np.newaxis, :] | |
input_tensor = torch.from_numpy(input_tensor) | |
input_tensor = input_tensor.float().permute(0, 3, 1, 2) | |
input_tensor = input_tensor / 255.0 * 2.0 - 1.0 | |
input_tensor = input_tensor.to(self.config.device_id) | |
return input_tensor, matrix | |
def postprocess(self, srcPoints, coeff): | |
# dstPoints = self.transformPoints2D.process(srcPoints, coeff) | |
# matrix^(-1) * src = dst | |
# src = matrix * dst | |
dstPoints = np.zeros(srcPoints.shape, dtype=np.float32) | |
for i in range(srcPoints.shape[0]): | |
dstPoints[i][0] = coeff[0][0] * srcPoints[i][0] + coeff[0][1] * srcPoints[i][1] + coeff[0][2] | |
dstPoints[i][1] = coeff[1][0] * srcPoints[i][0] + coeff[1][1] * srcPoints[i][1] + coeff[1][2] | |
return dstPoints | |
def analyze(self, image, scale, center_w, center_h): | |
input_tensor, matrix = self.preprocess(image, scale, center_w, center_h) | |
if self.dl_framework == "pytorch": | |
with torch.no_grad(): | |
output = self.alignment(input_tensor) | |
landmarks = output[-1][0] | |
else: | |
assert False | |
landmarks = self.denorm_points(landmarks) | |
landmarks = landmarks.data.cpu().numpy()[0] | |
landmarks = self.postprocess(landmarks, np.linalg.inv(matrix)) | |
return landmarks | |
def draw_pts(img, pts, mode="pts", shift=4, color=(0, 255, 0), radius=1, thickness=1, save_path=None, dif=0, | |
scale=0.3, concat=False, ): | |
img_draw = copy.deepcopy(img) | |
for cnt, p in enumerate(pts): | |
if mode == "index": | |
cv2.putText(img_draw, str(cnt), (int(float(p[0] + dif)), int(float(p[1] + dif))), cv2.FONT_HERSHEY_SIMPLEX, | |
scale, color, thickness) | |
elif mode == 'pts': | |
if len(img_draw.shape) > 2: | |
# 此处来回切换是因为opencv的bug | |
img_draw = cv2.cvtColor(img_draw, cv2.COLOR_BGR2RGB) | |
img_draw = cv2.cvtColor(img_draw, cv2.COLOR_RGB2BGR) | |
cv2.circle(img_draw, (int(p[0] * (1 << shift)), int(p[1] * (1 << shift))), radius << shift, color, -1, | |
cv2.LINE_AA, shift=shift) | |
else: | |
raise NotImplementedError | |
if concat: | |
img_draw = np.concatenate((img, img_draw), axis=1) | |
if save_path is not None: | |
cv2.imwrite(save_path, img_draw) | |
return img_draw | |
class LandmarkDetectorSTAR: | |
def __init__( | |
self, | |
): | |
self.detector = dlib.get_frontal_face_detector() | |
self.shape_predictor = dlib.shape_predictor(predictor_path) | |
# facial landmark detector | |
args = argparse.Namespace() | |
args.config_name = 'alignment' | |
# could be downloaded here: https://drive.google.com/file/d/1aOx0wYEZUfBndYy_8IYszLPG_D2fhxrT/view | |
# model_path = '/path/to/WFLW_STARLoss_NME_4_02_FR_2_32_AUC_0_605.pkl' | |
device_ids = '0' | |
device_ids = list(map(int, device_ids.split(","))) | |
self.alignment = Alignment(args, model_path, dl_framework="pytorch", device_ids=device_ids) | |
def detect_single_image(self, img): | |
bbox = self.detector(img, 1) | |
if len(bbox) == 0: | |
bbox = np.zeros(5) - 1 | |
lmks = np.zeros([68, 3]) - 1 # set to -1 when landmarks is inavailable | |
else: | |
face = self.shape_predictor(img, bbox[0]) | |
shape = [] | |
for i in range(68): | |
x = face.part(i).x | |
y = face.part(i).y | |
shape.append((x, y)) | |
shape = np.array(shape) | |
x1, x2 = shape[:, 0].min(), shape[:, 0].max() | |
y1, y2 = shape[:, 1].min(), shape[:, 1].max() | |
scale = min(x2 - x1, y2 - y1) / 200 * 1.05 | |
center_w = (x2 + x1) / 2 | |
center_h = (y2 + y1) / 2 | |
scale, center_w, center_h = float(scale), float(center_w), float(center_h) | |
lmks = self.alignment.analyze(img, scale, center_w, center_h) | |
h, w = img.shape[:2] | |
lmks = np.concatenate([lmks, np.ones([lmks.shape[0], 1])], axis=1).astype(np.float32) # (x, y, 1) | |
lmks[:, 0] /= w | |
lmks[:, 1] /= h | |
bbox = np.array([bbox[0].left(), bbox[0].top(), bbox[0].right(), bbox[0].bottom(), 1.]).astype(np.float32) # (x1, y1, x2, y2, score) | |
bbox[[0, 2]] /= w | |
bbox[[1, 3]] /= h | |
return bbox, lmks | |
def detect_dataset(self, dataloader): | |
""" | |
Annotates each frame with 68 facial landmarks | |
:return: dict mapping frame number to landmarks numpy array and the same thing for bboxes | |
""" | |
logger.info("Initialize Landmark Detector (STAR)...") | |
# 68 facial landmark detector | |
landmarks = {} | |
bboxes = {} | |
logger.info("Begin annotating landmarks...") | |
for item in tqdm(dataloader): | |
timestep_id = item["timestep_id"][0] | |
camera_id = item["camera_id"][0] | |
logger.info( | |
f"Annotate facial landmarks for timestep: {timestep_id}, camera: {camera_id}" | |
) | |
img = item["rgb"][0].numpy() | |
bbox, lmks = self.detect_single_image(img) | |
if len(bbox) == 0: | |
logger.error( | |
f"No bbox found for frame: {timestep_id}, camera: {camera_id}. Setting landmarks to all -1." | |
) | |
if camera_id not in landmarks: | |
landmarks[camera_id] = {} | |
if camera_id not in bboxes: | |
bboxes[camera_id] = {} | |
landmarks[camera_id][timestep_id] = lmks | |
bboxes[camera_id][timestep_id] = bbox | |
return landmarks, bboxes | |
def annotate_landmarks(self, dataloader): | |
""" | |
Annotates each frame with landmarks for face and iris. Assumes frames have been extracted | |
:return: | |
""" | |
lmks_face, bboxes_faces = self.detect_dataset(dataloader) | |
# construct final json | |
for camera_id, lmk_face_camera in lmks_face.items(): | |
bounding_box = [] | |
face_landmark_2d = [] | |
for timestep_id in lmk_face_camera.keys(): | |
bounding_box.append(bboxes_faces[camera_id][timestep_id][None]) | |
face_landmark_2d.append(lmks_face[camera_id][timestep_id][None]) | |
lmk_dict = { | |
"bounding_box": bounding_box, | |
"face_landmark_2d": face_landmark_2d, | |
} | |
for k, v in lmk_dict.items(): | |
if len(v) > 0: | |
lmk_dict[k] = np.concatenate(v, axis=0) | |
out_path = dataloader.dataset.get_property_path( | |
"landmark2d/STAR", camera_id=camera_id | |
) | |
logger.info(f"Saving landmarks to: {out_path}") | |
if not out_path.parent.exists(): | |
out_path.parent.mkdir(parents=True) | |
np.savez(out_path, **lmk_dict) | |
if __name__ == "__main__": | |
import tyro | |
from tqdm import tqdm | |
from torch.utils.data import DataLoader | |
from vhap.config.base import DataConfig, import_module | |
cfg = tyro.cli(DataConfig) | |
dataset = import_module(cfg._target)( | |
cfg=cfg, | |
img_to_tensor=False, | |
batchify_all_views=True, | |
) | |
dataset.items = dataset.items[:2] | |
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=4) | |
detector = LandmarkDetectorSTAR() | |
detector.annotate_landmarks(dataloader) | |