Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from plyfile import PlyData, PlyElement | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import math | |
import copy | |
from lam.models.rendering.utils.typing import * | |
from lam.models.rendering.utils.utils import trunc_exp, MLP | |
from einops import rearrange, repeat | |
inverse_sigmoid = lambda x: np.log(x / (1 - x)) | |
class GaussianModel: | |
def __init__(self, xyz=None, opacity=None, rotation=None, scaling=None, shs=None, offset=None, ply_path=None, sh2rgb=False, albedo=None, lights=None) -> None: | |
self.xyz: Tensor = xyz | |
self.opacity: Tensor = opacity | |
self.rotation: Tensor = rotation | |
self.scaling: Tensor = scaling | |
self.shs: Tensor = shs | |
self.albedo: Tensor = albedo | |
self.offset: Tensor = offset | |
self.lights: Tensor = lights | |
if ply_path is not None: | |
self.load_ply(ply_path, sh2rgb=sh2rgb) | |
def update_lights(self, lights): | |
self.lights = lights | |
def update_albedo(self, albedo): | |
self.albedo = albedo | |
def update_shs(self, shs): | |
self.shs = shs | |
def to_cuda(self): | |
self.xyz = self.xyz.cuda() | |
self.opacity = self.opacity.cuda() | |
self.rotation = self.rotation.cuda() | |
self.scaling = self.scaling.cuda() | |
self.shs = self.shs.cuda() | |
self.offset = self.offset.cuda() | |
self.albedo = self.albedo.cuda() | |
def construct_list_of_attributes(self): | |
l = ['x', 'y', 'z', 'nx', 'ny', 'nz'] | |
if len(self.shs.shape) == 2: | |
features_dc = self.shs[:, :3].unsqueeze(1) | |
features_rest = self.shs[:, 3:].unsqueeze(1) | |
else: | |
features_dc = self.shs[:, :1] | |
features_rest = self.shs[:, 1:] | |
for i in range(features_dc.shape[1]*features_dc.shape[2]): | |
l.append('f_dc_{}'.format(i)) | |
for i in range(features_rest.shape[1]*features_rest.shape[2]): | |
l.append('f_rest_{}'.format(i)) | |
l.append('opacity') | |
for i in range(self.scaling.shape[1]): | |
l.append('scale_{}'.format(i)) | |
for i in range(self.rotation.shape[1]): | |
l.append('rot_{}'.format(i)) | |
return l | |
def save_ply(self, path, rgb2sh=False, offset2xyz=False, albedo2rgb=False): | |
if offset2xyz: | |
xyz = self.offset.detach().cpu().float().numpy() | |
else: | |
xyz = self.xyz.detach().cpu().float().numpy() | |
if albedo2rgb: | |
self.shs = self.albedo | |
normals = np.zeros_like(xyz) | |
if len(self.shs.shape) == 2: | |
features_dc = self.shs[:, :3].unsqueeze(1).float() | |
features_rest = self.shs[:, 3:].unsqueeze(1).float() | |
else: | |
features_dc = self.shs[:, :1].float() | |
features_rest = self.shs[:, 1:].float() | |
f_dc = features_dc.detach().flatten(start_dim=1).contiguous().cpu().numpy() | |
f_rest = features_rest.detach().flatten(start_dim=1).contiguous().cpu().numpy() | |
if rgb2sh: | |
from lam.models.rendering.utils.sh_utils import RGB2SH | |
f_dc = RGB2SH(f_dc) | |
opacities = inverse_sigmoid(torch.clamp(self.opacity, 1e-3, 1 - 1e-3).detach().cpu().float().numpy()) | |
scale = np.log(self.scaling.detach().cpu().float().numpy()) | |
rotation = self.rotation.detach().cpu().float().numpy() | |
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()] | |
elements = np.empty(xyz.shape[0], dtype=dtype_full) | |
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1) | |
elements[:] = list(map(tuple, attributes)) | |
el = PlyElement.describe(elements, 'vertex') | |
PlyData([el]).write(path) | |
def save_ply_nodeact(self, path, rgb2sh=False, albedo2rgb=False): | |
if albedo2rgb: | |
self.shs = self.albedo | |
xyz = self.xyz.detach().cpu().float().numpy() | |
normals = np.zeros_like(xyz) | |
if len(self.shs.shape) == 2: | |
features_dc = self.shs[:, :3].unsqueeze(1).float() | |
features_rest = self.shs[:, 3:].unsqueeze(1).float() | |
else: | |
features_dc = self.shs[:, :1].float() | |
features_rest = self.shs[:, 1:].float() | |
f_dc = features_dc.detach().flatten(start_dim=1).contiguous().cpu().numpy() | |
f_rest = features_rest.detach().flatten(start_dim=1).contiguous().cpu().numpy() | |
if rgb2sh: | |
from lam.models.rendering.utils.sh_utils import RGB2SH | |
f_dc = RGB2SH(f_dc) | |
opacities = self.opacity.detach().cpu().float().numpy() | |
scale = self.scaling.detach().cpu().float().numpy() | |
rotation = self.rotation.detach().cpu().float().numpy() | |
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()] | |
elements = np.empty(xyz.shape[0], dtype=dtype_full) | |
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1) | |
elements[:] = list(map(tuple, attributes)) | |
el = PlyElement.describe(elements, 'vertex') | |
PlyData([el]).write(path) | |
def load_ply(self, path, sh2rgb=False): | |
plydata = PlyData.read(path) | |
xyz = np.stack((np.asarray(plydata.elements[0]["x"]), | |
np.asarray(plydata.elements[0]["y"]), | |
np.asarray(plydata.elements[0]["z"])), axis=1) | |
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis] | |
features_dc = np.zeros((xyz.shape[0], 3, 1)) | |
features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"]) | |
features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"]) | |
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"]) | |
self.sh_degree = 0 | |
extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")] | |
extra_f_names = sorted(extra_f_names, key = lambda x: int(x.split('_')[-1])) | |
features_extra = np.zeros((xyz.shape[0], len(extra_f_names))) | |
for idx, attr_name in enumerate(extra_f_names): | |
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
# Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC) | |
features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.sh_degree + 1) ** 2 - 1)) | |
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")] | |
scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1])) | |
scales = np.zeros((xyz.shape[0], len(scale_names))) | |
for idx, attr_name in enumerate(scale_names): | |
scales[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot_")] | |
rot_names = sorted(rot_names, key = lambda x: int(x.split('_')[-1])) | |
rots = np.zeros((xyz.shape[0], len(rot_names))) | |
for idx, attr_name in enumerate(rot_names): | |
rots[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
self.xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cpu").requires_grad_(False)) | |
self.features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cpu").transpose(1, 2).contiguous().requires_grad_(False)) | |
if sh2rgb: | |
from lam.models.rendering.utils.sh_utils import SH2RGB | |
self.features_dc = SH2RGB(self.features_dc) | |
self.features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cpu").transpose(1, 2).contiguous().requires_grad_(False)) | |
self.shs = torch.cat([self.features_dc, self.features_rest], dim=1) | |
self.opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cpu").requires_grad_(False)) | |
self.scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cpu").requires_grad_(False)) | |
self.rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cpu").requires_grad_(False)) | |
self.offset = nn.Parameter(torch.zeros_like(self.xyz).requires_grad_(False)) | |
self.albedo = nn.Parameter(torch.zeros_like(self.shs).requires_grad_(False)) | |
self.lights = nn.Parameter(torch.zeros_like(self.shs).requires_grad_(False)) | |
if sh2rgb: | |
self.opacity = nn.functional.sigmoid(self.opacity) | |
self.scaling = trunc_exp(self.scaling) | |
self.active_sh_degree = self.sh_degree | |