Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
| # holder of all proprietary rights on this computer program. | |
| # You can only use this computer program if you have closed | |
| # a license agreement with MPG or you get the right to use the computer | |
| # program from someone who is authorized to grant you that right. | |
| # Any use of the computer program without a valid license is prohibited and | |
| # liable to prosecution. | |
| # | |
| # Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
| # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
| # for Intelligent Systems. All rights reserved. | |
| # | |
| # Contact: [email protected] | |
| from __future__ import absolute_import | |
| from __future__ import print_function | |
| from __future__ import division | |
| import torch | |
| import torch.nn.functional as F | |
| def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32): | |
| """Calculates the rotation matrices for a batch of rotation vectors | |
| Parameters | |
| ---------- | |
| rot_vecs: torch.tensor Nx3 | |
| array of N axis-angle vectors | |
| Returns | |
| ------- | |
| R: torch.tensor Nx3x3 | |
| The rotation matrices for the given axis-angle parameters | |
| """ | |
| batch_size = rot_vecs.shape[0] | |
| device = rot_vecs.device | |
| angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True) | |
| rot_dir = rot_vecs / angle | |
| cos = torch.unsqueeze(torch.cos(angle), dim=1) | |
| sin = torch.unsqueeze(torch.sin(angle), dim=1) | |
| # Bx1 arrays | |
| rx, ry, rz = torch.split(rot_dir, 1, dim=1) | |
| K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device) | |
| zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device) | |
| K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1).view( | |
| (batch_size, 3, 3) | |
| ) | |
| ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) | |
| rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K) | |
| return rot_mat | |
| def vertices2landmarks(vertices, faces, lmk_faces_idx, lmk_bary_coords): | |
| """Calculates landmarks by barycentric interpolation | |
| Parameters | |
| ---------- | |
| vertices: torch.tensor BxVx3, dtype = torch.float32 | |
| The tensor of input vertices | |
| faces: torch.tensor Fx3, dtype = torch.long | |
| The faces of the mesh | |
| lmk_faces_idx: torch.tensor L, dtype = torch.long | |
| The tensor with the indices of the faces used to calculate the | |
| landmarks. | |
| lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32 | |
| The tensor of barycentric coordinates that are used to interpolate | |
| the landmarks | |
| Returns | |
| ------- | |
| landmarks: torch.tensor BxLx3, dtype = torch.float32 | |
| The coordinates of the landmarks for each mesh in the batch | |
| """ | |
| # Extract the indices of the vertices for each face | |
| # BxLx3 | |
| batch_size, num_verts = vertices.shape[:2] | |
| device = vertices.device | |
| lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1)).view( | |
| batch_size, -1, 3 | |
| ) | |
| lmk_faces += ( | |
| torch.arange(batch_size, dtype=torch.long, device=device).view(-1, 1, 1) | |
| * num_verts | |
| ) | |
| lmk_vertices = vertices.view(-1, 3)[lmk_faces].view(batch_size, -1, 3, 3) | |
| landmarks = torch.einsum("blfi,blf->bli", [lmk_vertices, lmk_bary_coords]) | |
| return landmarks | |
| def lbs( | |
| pose, | |
| v_shaped, | |
| posedirs, | |
| J_regressor, | |
| parents, | |
| lbs_weights, | |
| pose2rot=True, | |
| dtype=torch.float32, | |
| ): | |
| """Performs Linear Blend Skinning with the given shape and pose parameters | |
| Parameters | |
| ---------- | |
| betas : torch.tensor BxNB | |
| The tensor of shape parameters | |
| pose : torch.tensor Bx(J + 1) * 3 | |
| The pose parameters in axis-angle format | |
| v_template: torch.tensor BxVx3 | |
| The template mesh that will be deformed | |
| shapedirs : torch.tensor 1xNB | |
| The tensor of PCA shape displacements | |
| posedirs : torch.tensor Px(V * 3) | |
| The pose PCA coefficients | |
| J_regressor : torch.tensor JxV | |
| The regressor array that is used to calculate the joints from | |
| the position of the vertices | |
| parents: torch.tensor J | |
| The array that describes the kinematic tree for the model | |
| lbs_weights: torch.tensor N x V x (J + 1) | |
| The linear blend skinning weights that represent how much the | |
| rotation matrix of each part affects each vertex | |
| pose2rot: bool, optional | |
| Flag on whether to convert the input pose tensor to rotation | |
| matrices. The default value is True. If False, then the pose tensor | |
| should already contain rotation matrices and have a size of | |
| Bx(J + 1)x9 | |
| dtype: torch.dtype, optional | |
| Returns | |
| ------- | |
| verts: torch.tensor BxVx3 | |
| The vertices of the mesh after applying the shape and pose | |
| displacements. | |
| joints: torch.tensor BxJx3 | |
| The joints of the model | |
| """ | |
| batch_size = pose.shape[0] | |
| device = pose.device | |
| # Get the joints | |
| # NxJx3 array | |
| J = vertices2joints(J_regressor, v_shaped) | |
| # 3. Add pose blend shapes | |
| # N x J x 3 x 3 | |
| ident = torch.eye(3, dtype=dtype, device=device) | |
| if pose2rot: | |
| rot_mats = batch_rodrigues(pose.view(-1, 3), dtype=dtype).view( | |
| [batch_size, -1, 3, 3] | |
| ) | |
| pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1]) | |
| # (N x P) x (P, V * 3) -> N x V x 3 | |
| pose_offsets = torch.matmul(pose_feature, posedirs).view(batch_size, -1, 3) | |
| else: | |
| pose_feature = pose[:, 1:].view(batch_size, -1, 3, 3) - ident | |
| rot_mats = pose.view(batch_size, -1, 3, 3) | |
| pose_offsets = torch.matmul(pose_feature.view(batch_size, -1), posedirs).view( | |
| batch_size, -1, 3 | |
| ) | |
| v_posed = pose_offsets + v_shaped | |
| # 4. Get the global joint location | |
| J_transformed, A = batch_rigid_transform(rot_mats, J, parents, dtype=dtype) | |
| # 5. Do skinning: | |
| # W is N x V x (J + 1) | |
| W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1]) | |
| # (N x V x (J + 1)) x (N x (J + 1) x 16) | |
| num_joints = J_regressor.shape[0] | |
| T = torch.matmul(W, A.view(batch_size, num_joints, 16)).view(batch_size, -1, 4, 4) | |
| homogen_coord = torch.ones( | |
| [batch_size, v_posed.shape[1], 1], dtype=dtype, device=device | |
| ) | |
| v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2) | |
| v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1)) | |
| verts = v_homo[:, :, :3, 0] | |
| return verts, J_transformed, A[:, 1] | |
| def vertices2joints(J_regressor, vertices): | |
| """Calculates the 3D joint locations from the vertices | |
| Parameters | |
| ---------- | |
| J_regressor : torch.tensor JxV | |
| The regressor array that is used to calculate the joints from the | |
| position of the vertices | |
| vertices : torch.tensor BxVx3 | |
| The tensor of mesh vertices | |
| Returns | |
| ------- | |
| torch.tensor BxJx3 | |
| The location of the joints | |
| """ | |
| return torch.einsum("bik,ji->bjk", [vertices, J_regressor]) | |
| def blend_shapes(betas, shape_disps): | |
| """Calculates the per vertex displacement due to the blend shapes | |
| Parameters | |
| ---------- | |
| betas : torch.tensor Bx(num_betas) | |
| Blend shape coefficients | |
| shape_disps: torch.tensor Vx3x(num_betas) | |
| Blend shapes | |
| Returns | |
| ------- | |
| torch.tensor BxVx3 | |
| The per-vertex displacement due to shape deformation | |
| """ | |
| # Displacement[b, m, k] = sum_{l} betas[b, l] * shape_disps[m, k, l] | |
| # i.e. Multiply each shape displacement by its corresponding beta and | |
| # then sum them. | |
| blend_shape = torch.einsum("bl,mkl->bmk", [betas, shape_disps]) | |
| return blend_shape | |
| def transform_mat(R, t): | |
| """Creates a batch of transformation matrices | |
| Args: | |
| - R: Bx3x3 array of a batch of rotation matrices | |
| - t: Bx3x1 array of a batch of translation vectors | |
| Returns: | |
| - T: Bx4x4 Transformation matrix | |
| """ | |
| # No padding left or right, only add an extra row | |
| return torch.cat([F.pad(R, [0, 0, 0, 1]), F.pad(t, [0, 0, 0, 1], value=1)], dim=2) | |
| def batch_rigid_transform(rot_mats, joints, parents, dtype=torch.float32): | |
| """ | |
| Applies a batch of rigid transformations to the joints | |
| Parameters | |
| ---------- | |
| rot_mats : torch.tensor BxNx3x3 | |
| Tensor of rotation matrices | |
| joints : torch.tensor BxNx3 | |
| Locations of joints | |
| parents : torch.tensor BxN | |
| The kinematic tree of each object | |
| dtype : torch.dtype, optional: | |
| The data type of the created tensors, the default is torch.float32 | |
| Returns | |
| ------- | |
| posed_joints : torch.tensor BxNx3 | |
| The locations of the joints after applying the pose rotations | |
| rel_transforms : torch.tensor BxNx4x4 | |
| The relative (with respect to the root joint) rigid transformations | |
| for all the joints | |
| """ | |
| joints = torch.unsqueeze(joints, dim=-1) | |
| rel_joints = joints.clone().contiguous() | |
| rel_joints[:, 1:] = rel_joints[:, 1:] - joints[:, parents[1:]] | |
| transforms_mat = transform_mat(rot_mats.view(-1, 3, 3), rel_joints.view(-1, 3, 1)) | |
| transforms_mat = transforms_mat.view(-1, joints.shape[1], 4, 4) | |
| transform_chain = [transforms_mat[:, 0]] | |
| for i in range(1, parents.shape[0]): | |
| # Subtract the joint location at the rest pose | |
| # No need for rotation, since it's identity when at rest | |
| curr_res = torch.matmul(transform_chain[parents[i]], transforms_mat[:, i]) | |
| transform_chain.append(curr_res) | |
| transforms = torch.stack(transform_chain, dim=1) | |
| # The last column of the transformations contains the posed joints | |
| posed_joints = transforms[:, :, :3, 3] | |
| joints_homogen = F.pad(joints, [0, 0, 0, 1]) | |
| rel_transforms = transforms - F.pad( | |
| torch.matmul(transforms, joints_homogen), [3, 0, 0, 0, 0, 0, 0, 0] | |
| ) | |
| return posed_joints, rel_transforms | |