LAM / flame_tracking_single_image.py
Ethan18's picture
Upload folder using huggingface_hub
23ea56e verified
raw
history blame
13.9 kB
import argparse
import json
import os
import time
from pathlib import Path
import cv2
import numpy as np
import torch
import torchvision
import tyro
import yaml
from loguru import logger
from PIL import Image
from external.human_matting import StyleMatteEngine as HumanMattingEngine
from external.landmark_detection.FaceBoxesV2.faceboxes_detector import \
FaceBoxesDetector
from external.landmark_detection.infer_image import Alignment
from external.vgghead_detector import VGGHeadDetector
from vhap.config.base import BaseTrackingConfig
from vhap.export_as_nerf_dataset import (NeRFDatasetWriter,
TrackedFLAMEDatasetWriter, split_json)
from vhap.model.tracker import GlobalTracker
# Define error codes for various processing failures.
ERROR_CODE = {'FailedToDetect': 1, 'FailedToOptimize': 2, 'FailedToExport': 3}
def expand_bbox(bbox, scale=1.1):
"""Expands the bounding box by a given scale."""
xmin, ymin, xmax, ymax = bbox.unbind(dim=-1)
center_x, center_y = (xmin + xmax) / 2, (ymin + ymax) / 2
extension_size = torch.sqrt((ymax - ymin) * (xmax - xmin)) * scale
x_min_expanded = center_x - extension_size / 2
x_max_expanded = center_x + extension_size / 2
y_min_expanded = center_y - extension_size / 2
y_max_expanded = center_y + extension_size / 2
return torch.stack(
[x_min_expanded, y_min_expanded, x_max_expanded, y_max_expanded],
dim=-1)
def load_config(src_folder: Path):
"""Load configuration from the given source folder."""
config_file_path = src_folder / 'config.yml'
if not config_file_path.exists():
src_folder = sorted(
src_folder.iterdir())[-1] # Get the last modified folder
config_file_path = src_folder / 'config.yml'
assert config_file_path.exists(), f'File not found: {config_file_path}'
config_data = yaml.load(config_file_path.read_text(), Loader=yaml.Loader)
return src_folder, config_data
class FlameTrackingSingleImage:
"""Class for tracking and processing a single image."""
def __init__(
self,
output_dir,
alignment_model_path='./pretrain_model/68_keypoints_model.pkl',
vgghead_model_path='./pretrain_model/vgghead/vgg_heads_l.trcd',
human_matting_path='./pretrain_model/matting/stylematte_synth.pt',
facebox_model_path='./pretrain_model/FaceBoxesV2.pth',
detect_iris_landmarks=False):
logger.info(f'Output Directory: {output_dir}')
start_time = time.time()
logger.info('Loading Pre-trained Models...')
self.output_dir = output_dir
self.output_preprocess = os.path.join(output_dir, 'preprocess')
self.output_tracking = os.path.join(output_dir, 'tracking')
self.output_export = os.path.join(output_dir, 'export')
self.device = 'cuda:0'
# Load alignment model
assert os.path.exists(
alignment_model_path), f'{alignment_model_path} does not exist!'
args = self._parse_args()
args.model_path = alignment_model_path
self.alignment = Alignment(args,
alignment_model_path,
dl_framework='pytorch',
device_ids=[0])
# Load VGG head model
assert os.path.exists(
vgghead_model_path), f'{vgghead_model_path} does not exist!'
self.vgghead_encoder = VGGHeadDetector(
device=self.device, vggheadmodel_path=vgghead_model_path)
# Load human matting model
assert os.path.exists(
human_matting_path), f'{human_matting_path} does not exist!'
self.matting_engine = HumanMattingEngine(
device=self.device, human_matting_path=human_matting_path)
# Load face box detector model
assert os.path.exists(
facebox_model_path), f'{facebox_model_path} does not exist!'
self.detector = FaceBoxesDetector('FaceBoxes', facebox_model_path,
True, self.device)
self.detect_iris_landmarks_flag = detect_iris_landmarks
if self.detect_iris_landmarks_flag:
from fdlite import FaceDetection, FaceLandmark, IrisLandmark
self.iris_detect_faces = FaceDetection()
self.iris_detect_face_landmarks = FaceLandmark()
self.iris_detect_iris_landmarks = IrisLandmark()
end_time = time.time()
torch.cuda.empty_cache()
logger.info(f'Finished Loading Pre-trained Models. Time: '
f'{end_time - start_time:.2f}s')
def _parse_args(self):
parser = argparse.ArgumentParser(description='Evaluation script')
parser.add_argument('--output_dir',
type=str,
help='Output directory',
default='output')
parser.add_argument('--config_name',
type=str,
help='Configuration name',
default='alignment')
return parser.parse_args()
def preprocess(self, input_image_path):
"""Preprocess the input image for tracking."""
if not os.path.exists(input_image_path):
logger.warning(f'{input_image_path} does not exist!')
return ERROR_CODE['FailedToDetect']
start_time = time.time()
logger.info('Starting Preprocessing...')
name_list = []
frame_index = 0
# Bounding box detection
# frame = torchvision.io.read_image(input_image_path)
frame = cv2.imread(input_image_path)[:, :, ::-1].copy()
frame = torch.Tensor(frame).permute(2, 0, 1).contiguous()[:3, ...]
try:
_, frame_bbox, _ = self.vgghead_encoder(frame, frame_index)
except Exception:
logger.error('Failed to detect face')
return ERROR_CODE['FailedToDetect']
if frame_bbox is None:
logger.error('Failed to detect face')
return ERROR_CODE['FailedToDetect']
# Expand bounding box
name_list.append('00000.png')
frame_bbox = expand_bbox(frame_bbox, scale=1.65).long()
# Crop and resize
cropped_frame = torchvision.transforms.functional.crop(
frame,
top=frame_bbox[1],
left=frame_bbox[0],
height=frame_bbox[3] - frame_bbox[1],
width=frame_bbox[2] - frame_bbox[0])
cropped_frame = torchvision.transforms.functional.resize(
cropped_frame, (1024, 1024), antialias=True)
# Apply matting
cropped_frame, mask = self.matting_engine(cropped_frame / 255.0,
return_type='matting',
background_rgb=1.0)
cropped_frame = cropped_frame.cpu() * 255.0
saved_image = np.round(cropped_frame.cpu().permute(
1, 2, 0).numpy()).astype(np.uint8)[:, :, (2, 1, 0)]
# Create output directories if not exist
self.sub_output_dir = os.path.join(
self.output_preprocess,
os.path.splitext(os.path.basename(input_image_path))[0])
output_image_dir = os.path.join(self.sub_output_dir, 'images')
output_mask_dir = os.path.join(self.sub_output_dir, 'mask')
output_alpha_map_dir = os.path.join(self.sub_output_dir, 'alpha_maps')
os.makedirs(output_image_dir, exist_ok=True)
os.makedirs(output_mask_dir, exist_ok=True)
os.makedirs(output_alpha_map_dir, exist_ok=True)
# Save processed image, mask and alpha map
cv2.imwrite(os.path.join(output_image_dir, name_list[frame_index]),
saved_image)
cv2.imwrite(os.path.join(output_mask_dir, name_list[frame_index]),
np.array((mask.cpu() * 255.0)).astype(np.uint8))
cv2.imwrite(
os.path.join(output_alpha_map_dir,
name_list[frame_index]).replace('.png', '.jpg'),
(np.ones_like(saved_image) * 255).astype(np.uint8))
# Landmark detection
detections, _ = self.detector.detect(saved_image, 0.8, 1)
for idx, detection in enumerate(detections):
x1_ori, y1_ori = detection[2], detection[3]
x2_ori, y2_ori = x1_ori + detection[4], y1_ori + detection[5]
scale = max(x2_ori - x1_ori, y2_ori - y1_ori) / 180
center_w, center_h = (x1_ori + x2_ori) / 2, (y1_ori + y2_ori) / 2
scale, center_w, center_h = float(scale), float(center_w), float(
center_h)
face_landmarks = self.alignment.analyze(saved_image, scale,
center_w, center_h)
# Normalize and save landmarks
normalized_landmarks = np.zeros((face_landmarks.shape[0], 3))
normalized_landmarks[:, :2] = face_landmarks / 1024
landmark_output_dir = os.path.join(self.sub_output_dir, 'landmark2d')
os.makedirs(landmark_output_dir, exist_ok=True)
landmark_data = {
'bounding_box': [],
'face_landmark_2d': normalized_landmarks[None, ...],
}
landmark_path = os.path.join(landmark_output_dir, 'landmarks.npz')
np.savez(landmark_path, **landmark_data)
if self.detect_iris_landmarks_flag:
self._detect_iris_landmarks(
os.path.join(output_image_dir, name_list[frame_index]))
end_time = time.time()
torch.cuda.empty_cache()
logger.info(
f'Finished Processing Image. Time: {end_time - start_time:.2f}s')
return 0
def optimize(self):
"""Optimize the tracking model using configuration data."""
start_time = time.time()
logger.info('Starting Optimization...')
tyro.extras.set_accent_color('bright_yellow')
config_data = tyro.cli(BaseTrackingConfig)
config_data.data.sequence = self.sub_output_dir.split('/')[-1]
config_data.data.root_folder = Path(
os.path.dirname(self.sub_output_dir))
if not os.path.exists(self.sub_output_dir):
logger.error(f'Failed to load {self.sub_output_dir}')
return ERROR_CODE['FailedToOptimize']
config_data.exp.output_folder = Path(self.output_tracking)
tracker = GlobalTracker(config_data)
tracker.optimize()
end_time = time.time()
torch.cuda.empty_cache()
logger.info(
f'Finished Optimization. Time: {end_time - start_time:.2f}s')
return 0
def _detect_iris_landmarks(self, image_path):
"""Detect iris landmarks in the given image."""
from fdlite import face_detection_to_roi, iris_roi_from_face_landmarks
img = Image.open(image_path)
img_size = (1024, 1024)
face_detections = self.iris_detect_faces(img)
if len(face_detections) != 1:
logger.warning('Empty iris landmarks')
else:
face_detection = face_detections[0]
try:
face_roi = face_detection_to_roi(face_detection, img_size)
except ValueError:
logger.warning('Empty iris landmarks')
return
face_landmarks = self.iris_detect_face_landmarks(img, face_roi)
if len(face_landmarks) == 0:
logger.warning('Empty iris landmarks')
return
iris_rois = iris_roi_from_face_landmarks(face_landmarks, img_size)
if len(iris_rois) != 2:
logger.warning('Empty iris landmarks')
return
landmarks = []
for iris_roi in iris_rois[::-1]:
try:
iris_landmarks = self.iris_detect_iris_landmarks(
img, iris_roi).iris[0:1]
except np.linalg.LinAlgError:
logger.warning('Failed to get iris landmarks')
break
# For each landmark, append x and y coordinates scaled to 1024.
for landmark in iris_landmarks:
landmarks.append(landmark.x * 1024)
landmarks.append(landmark.y * 1024)
landmark_data = {'00000.png': landmarks}
json.dump(
landmark_data,
open(
os.path.join(self.sub_output_dir, 'landmark2d',
'iris.json'), 'w'))
def export(self):
"""Export the tracking results to configured folder."""
logger.info(f'Beginning export from {self.output_tracking}')
start_time = time.time()
if not os.path.exists(self.output_tracking):
logger.error(f'Failed to load {self.output_tracking}')
return ERROR_CODE['FailedToExport'], 'Failed'
src_folder = Path(self.output_tracking)
tgt_folder = Path(self.output_export,
self.sub_output_dir.split('/')[-1])
src_folder, config_data = load_config(src_folder)
nerf_writer = NeRFDatasetWriter(config_data.data, tgt_folder, None,
None, 'white')
nerf_writer.write()
flame_writer = TrackedFLAMEDatasetWriter(config_data.model,
src_folder,
tgt_folder,
mode='param',
epoch=-1)
flame_writer.write()
split_json(tgt_folder)
end_time = time.time()
torch.cuda.empty_cache()
logger.info(f'Finished Export. Time: {end_time - start_time:.2f}s')
return 0, str(tgt_folder)