Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023-2024, Zexin He | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import numpy as np | |
import torch | |
def images_to_video(images, output_path, fps, gradio_codec: bool, verbose=False): | |
import imageio | |
# images: torch.tensor (T, C, H, W), 0-1 or numpy: (T, H, W, 3) 0-255 | |
os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
frames = [] | |
for i in range(images.shape[0]): | |
if isinstance(images, torch.Tensor): | |
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) | |
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ | |
f"Frame shape mismatch: {frame.shape} vs {images.shape}" | |
assert frame.min() >= 0 and frame.max() <= 255, \ | |
f"Frame value out of range: {frame.min()} ~ {frame.max()}" | |
else: | |
frame = images[i] | |
frames.append(frame) | |
frames = np.stack(frames) | |
if gradio_codec: | |
imageio.mimwrite(output_path, frames, fps=fps, quality=10) | |
else: | |
# imageio.mimwrite(output_path, frames, fps=fps, codec='mpeg4', quality=10) | |
imageio.mimwrite(output_path, frames, fps=fps, quality=10) | |
if verbose: | |
print(f"Using gradio codec option {gradio_codec}") | |
print(f"Saved video to {output_path}") | |
def save_images2video(img_lst, v_pth, fps): | |
import moviepy.editor as mpy | |
# Convert the list of NumPy arrays to a list of ImageClip objects | |
clips = [mpy.ImageClip(img).set_duration(0.1) for img in img_lst] # 0.1 seconds per frame | |
# Concatenate the ImageClips into a single VideoClip | |
video = mpy.concatenate_videoclips(clips, method="compose") | |
# Write the VideoClip to a file | |
video.write_videofile(v_pth, fps=fps) # setting fps to 10 as example | |
print("save video to:", v_pth) | |
if __name__ == "__main__": | |
from glob import glob | |
clip_name = "clip1" | |
ptn = f"./assets/sample_motion/export/{clip_name}/images/*.png" | |
images_pths = glob(ptn) | |
import cv2 | |
import numpy as np | |
images = [cv2.imread(pth) for pth in images_pths] | |
save_images2video(images, "./assets/sample_mption/export/{clip_name}/video.mp4", 25, True) |