Spaces:
Running
on
Zero
Running
on
Zero
from functools import partial | |
import torch | |
import torch.nn as nn | |
from typing import Any, Dict, Optional, Tuple, Union | |
import torch.nn.functional as F | |
assert hasattr(F, "scaled_dot_product_attention") | |
from diffusers.models.attention import Attention, FeedForward | |
from diffusers.models.attention_processor import CogVideoXAttnProcessor2_0, JointAttnProcessor2_0 | |
class CogVideoXBlock(nn.Module): | |
r""" | |
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model. | |
Parameters: | |
dim (`int`): | |
The number of channels in the input and output. | |
num_attention_heads (`int`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): | |
The number of channels in each head. | |
time_embed_dim (`int`): | |
The number of channels in timestep embedding. | |
dropout (`float`, defaults to `0.0`): | |
The dropout probability to use. | |
activation_fn (`str`, defaults to `"gelu-approximate"`): | |
Activation function to be used in feed-forward. | |
attention_bias (`bool`, defaults to `False`): | |
Whether or not to use bias in attention projection layers. | |
qk_norm (`bool`, defaults to `True`): | |
Whether or not to use normalization after query and key projections in Attention. | |
norm_elementwise_affine (`bool`, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_eps (`float`, defaults to `1e-5`): | |
Epsilon value for normalization layers. | |
final_dropout (`bool` defaults to `False`): | |
Whether to apply a final dropout after the last feed-forward layer. | |
ff_inner_dim (`int`, *optional*, defaults to `None`): | |
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used. | |
ff_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in Feed-forward layer. | |
attention_out_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in Attention output projection layer. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int, | |
# num_attention_heads: int, | |
# attention_head_dim: int, | |
# time_embed_dim: int, | |
dropout: float = 0.0, | |
activation_fn: str = "gelu-approximate", | |
attention_bias: bool = False, | |
qk_norm: bool = True, | |
norm_elementwise_affine: bool = True, | |
eps: float = 1e-5, | |
# norm_eps: float = 1e-5, | |
final_dropout: bool = True, | |
ff_inner_dim: Optional[int] = None, | |
ff_bias: bool = True, | |
attention_out_bias: bool = True, | |
): | |
super().__init__() | |
norm_eps = eps | |
num_attention_heads = num_heads | |
attention_head_dim = dim // num_attention_heads | |
assert attention_head_dim * num_attention_heads == dim | |
# 1. Self Attention | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps, bias=True) | |
self.norm1_context = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps, bias=True) | |
self.attn1 = Attention( | |
query_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
qk_norm="layer_norm" if qk_norm else None, | |
eps=1e-6, | |
bias=attention_bias, | |
out_bias=attention_out_bias, | |
processor=CogVideoXAttnProcessor2_0(), | |
) | |
# 2. Feed Forward | |
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps, bias=True) | |
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps, bias=True) | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
inner_dim=ff_inner_dim, | |
bias=ff_bias, | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor = None, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
) -> torch.Tensor: | |
text_seq_length = encoder_hidden_states.size(1) | |
# norm & modulate | |
# norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1( | |
# hidden_states, encoder_hidden_states, temb | |
# ) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states) | |
# attention | |
attn_hidden_states, attn_encoder_hidden_states = self.attn1( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
) | |
hidden_states = hidden_states + attn_hidden_states | |
encoder_hidden_states = encoder_hidden_states + attn_encoder_hidden_states | |
# norm & modulate | |
# norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2( | |
# hidden_states, encoder_hidden_states, temb | |
# ) | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) | |
# feed-forward | |
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) | |
ff_output = self.ff(norm_hidden_states) | |
hidden_states = hidden_states + ff_output[:, text_seq_length:] | |
encoder_hidden_states = encoder_hidden_states + ff_output[:, :text_seq_length] | |
return hidden_states, encoder_hidden_states | |
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): | |
# "feed_forward_chunk_size" can be used to save memory | |
if hidden_states.shape[chunk_dim] % chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = hidden_states.shape[chunk_dim] // chunk_size | |
ff_output = torch.cat( | |
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], | |
dim=chunk_dim, | |
) | |
return ff_output | |
class QKNormJointAttnProcessor2_0: | |
"""Attention processor used typically in processing the SD3-like self-attention projections.""" | |
def __init__(self): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
*args, | |
**kwargs, | |
) -> torch.FloatTensor: | |
residual = hidden_states | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
context_input_ndim = encoder_hidden_states.ndim | |
if context_input_ndim == 4: | |
batch_size, channel, height, width = encoder_hidden_states.shape | |
encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size = encoder_hidden_states.shape[0] | |
# `sample` projections. | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states) | |
value = attn.to_v(hidden_states) | |
# `context` projections. | |
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) | |
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
# attention | |
query = torch.cat([query, encoder_hidden_states_query_proj], dim=1) | |
key = torch.cat([key, encoder_hidden_states_key_proj], dim=1) | |
value = torch.cat([value, encoder_hidden_states_value_proj], dim=1) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# Split the attention outputs. | |
hidden_states, encoder_hidden_states = ( | |
hidden_states[:, : residual.shape[1]], | |
hidden_states[:, residual.shape[1] :], | |
) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if not attn.context_pre_only: | |
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if context_input_ndim == 4: | |
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
return hidden_states, encoder_hidden_states | |
class SD3JointTransformerBlock(nn.Module): | |
r""" | |
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. | |
Reference: https://arxiv.org/abs/2403.03206 | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the | |
processing of `context` conditions. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int, | |
eps: float, | |
# num_attention_heads: int, | |
# attention_head_dim: int, | |
context_pre_only: bool = False, | |
qk_norm: Optional[str] = None, | |
use_dual_attention: bool = False, | |
): | |
super().__init__() | |
num_attention_heads = num_heads | |
attention_head_dim = dim // num_attention_heads | |
assert attention_head_dim * num_attention_heads == dim | |
self.use_dual_attention = use_dual_attention | |
self.context_pre_only = context_pre_only | |
# context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero" | |
# if use_dual_attention: | |
# self.norm1 = SD35AdaLayerNormZeroX(dim) | |
# else: | |
# self.norm1 = AdaLayerNormZero(dim) | |
self.norm1 = nn.LayerNorm(dim) | |
# if context_norm_type == "ada_norm_continous": | |
# self.norm1_context = AdaLayerNormContinuous( | |
# dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm" | |
# ) | |
# elif context_norm_type == "ada_norm_zero": | |
# self.norm1_context = AdaLayerNormZero(dim) | |
# else: | |
# raise ValueError( | |
# f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`" | |
# ) | |
# self.norm1_context = AdaLayerNormZero(dim) | |
self.norm1_context = nn.LayerNorm(dim) | |
processor = JointAttnProcessor2_0() | |
self.attn = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
added_kv_proj_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=dim, | |
context_pre_only=context_pre_only, | |
bias=True, | |
processor=processor, | |
qk_norm=qk_norm, | |
eps=eps, | |
) | |
if use_dual_attention: | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=dim, | |
bias=True, | |
processor=processor, | |
qk_norm=qk_norm, | |
eps=eps, | |
) | |
else: | |
self.attn2 = None | |
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) | |
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
if not context_pre_only: | |
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) | |
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
else: | |
self.norm2_context = None | |
self.ff_context = None | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor=None | |
): | |
# if self.use_dual_attention: | |
# norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1( | |
# hidden_states, emb=temb | |
# ) | |
# else: | |
# norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) | |
# if self.context_pre_only: | |
# norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) | |
# else: | |
# norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( | |
# encoder_hidden_states, emb=temb | |
# ) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states) | |
# Attention. | |
attn_output, context_attn_output = self.attn( | |
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states | |
) | |
# Process attention outputs for the `hidden_states`. | |
# attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = hidden_states + attn_output | |
if self.use_dual_attention: | |
attn_output2 = self.attn2(hidden_states=norm_hidden_states) | |
# attn_output2 = gate_msa2.unsqueeze(1) * attn_output2 | |
hidden_states = hidden_states + attn_output2 | |
norm_hidden_states = self.norm2(hidden_states) | |
# norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
# ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = hidden_states + ff_output | |
# Process attention outputs for the `encoder_hidden_states`. | |
if self.context_pre_only: | |
encoder_hidden_states = None | |
else: | |
# context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output | |
encoder_hidden_states = encoder_hidden_states + context_attn_output | |
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) | |
# norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
context_ff_output = _chunked_feed_forward( | |
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size | |
) | |
else: | |
context_ff_output = self.ff_context(norm_encoder_hidden_states) | |
# encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output | |
encoder_hidden_states = encoder_hidden_states + context_ff_output | |
return hidden_states, encoder_hidden_states |