Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import cv2 | |
import numpy as np | |
from mpl_toolkits.mplot3d import Axes3D | |
import matplotlib.pyplot as plt | |
import matplotlib as mpl | |
import os | |
import sys | |
os.environ["PYOPENGL_PLATFORM"] = "egl" | |
from pytorch3d.structures import Meshes, Pointclouds | |
from pytorch3d.renderer import ( | |
PointLights, | |
DirectionalLights, | |
PerspectiveCameras, | |
Materials, | |
SoftPhongShader, | |
RasterizationSettings, | |
MeshRenderer, | |
MeshRendererWithFragments, | |
MeshRasterizer, | |
TexturesVertex, | |
PointsRasterizationSettings, | |
PointsRenderer, | |
PointsRasterizer, | |
AlphaCompositor | |
) | |
import torch | |
import torch.nn as nn | |
def vis_keypoints_with_skeleton(img, kps, kps_lines, kp_thresh=0.4, alpha=1): | |
# Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv. | |
cmap = plt.get_cmap('rainbow') | |
colors = [cmap(i) for i in np.linspace(0, 1, len(kps_lines) + 2)] | |
colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors] | |
# Perform the drawing on a copy of the image, to allow for blending. | |
kp_mask = np.copy(img) | |
# Draw the keypoints. | |
for l in range(len(kps_lines)): | |
i1 = kps_lines[l][0] | |
i2 = kps_lines[l][1] | |
p1 = kps[0, i1].astype(np.int32), kps[1, i1].astype(np.int32) | |
p2 = kps[0, i2].astype(np.int32), kps[1, i2].astype(np.int32) | |
if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh: | |
cv2.line( | |
kp_mask, p1, p2, | |
color=colors[l], thickness=2, lineType=cv2.LINE_AA) | |
if kps[2, i1] > kp_thresh: | |
cv2.circle( | |
kp_mask, p1, | |
radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA) | |
if kps[2, i2] > kp_thresh: | |
cv2.circle( | |
kp_mask, p2, | |
radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA) | |
# Blend the keypoints. | |
return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0) | |
def vis_keypoints(img, kps, alpha=1): | |
# Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv. | |
cmap = plt.get_cmap('rainbow') | |
colors = [cmap(i) for i in np.linspace(0, 1, len(kps) + 2)] | |
colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors] | |
# Perform the drawing on a copy of the image, to allow for blending. | |
kp_mask = np.copy(img) | |
# Draw the keypoints. | |
for i in range(len(kps)): | |
p = kps[i][0].astype(np.int32), kps[i][1].astype(np.int32) | |
cv2.circle(kp_mask, p, radius=3, color=colors[i], thickness=-1, lineType=cv2.LINE_AA) | |
# Blend the keypoints. | |
return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0) | |
def render_mesh(mesh, face, cam_param, bkg, blend_ratio=1.0, return_bg_mask=False, R=None, T=None, return_fragments=False): | |
mesh = mesh.cuda()[None,:,:] | |
face = torch.LongTensor(face.astype(np.int64)).cuda()[None,:,:] | |
cam_param = {k: v.cuda()[None,:] for k,v in cam_param.items()} | |
render_shape = (bkg.shape[0], bkg.shape[1]) # height, width | |
batch_size, vertex_num = mesh.shape[:2] | |
textures = TexturesVertex(verts_features=torch.ones((batch_size,vertex_num,3)).float().cuda()) | |
mesh = torch.stack((-mesh[:,:,0], -mesh[:,:,1], mesh[:,:,2]),2) # reverse x- and y-axis following PyTorch3D axis direction | |
mesh = Meshes(mesh, face, textures) | |
if R is None: | |
cameras = PerspectiveCameras(focal_length=cam_param['focal'], | |
principal_point=cam_param['princpt'], | |
device='cuda', | |
in_ndc=False, | |
image_size=torch.LongTensor(render_shape).cuda().view(1,2)) | |
else: | |
cameras = PerspectiveCameras(focal_length=cam_param['focal'], | |
principal_point=cam_param['princpt'], | |
device='cuda', | |
in_ndc=False, | |
image_size=torch.LongTensor(render_shape).cuda().view(1,2), | |
R=R, | |
T=T) | |
raster_settings = RasterizationSettings(image_size=render_shape, blur_radius=0.0, faces_per_pixel=1, bin_size=0) | |
rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings).cuda() | |
lights = PointLights(device='cuda') | |
shader = SoftPhongShader(device='cuda', cameras=cameras, lights=lights) | |
materials = Materials( | |
device='cuda', | |
specular_color=[[0.0, 0.0, 0.0]], | |
shininess=0.0 | |
) | |
# render | |
with torch.no_grad(): | |
renderer = MeshRendererWithFragments(rasterizer=rasterizer, shader=shader) | |
images, fragments = renderer(mesh, materials=materials) | |
# background masking | |
is_bkg = (fragments.zbuf <= 0).float().cpu().numpy()[0] | |
render = images[0,:,:,:3].cpu().numpy() | |
fg = render * blend_ratio + bkg/255 * (1 - blend_ratio) | |
render = fg * (1 - is_bkg) * 255 + bkg * is_bkg | |
ret = [render] | |
if return_bg_mask: | |
ret.append(is_bkg) | |
if return_fragments: | |
ret.append(fragments) | |
return tuple(ret) | |
def rasterize_mesh(mesh, face, cam_param, height, width, return_bg_mask=False, R=None, T=None): | |
mesh = mesh.cuda()[None,:,:] | |
face = face.long().cuda()[None,:,:] | |
cam_param = {k: v.cuda()[None,:] for k,v in cam_param.items()} | |
render_shape = (height, width) | |
batch_size, vertex_num = mesh.shape[:2] | |
textures = TexturesVertex(verts_features=torch.ones((batch_size,vertex_num,3)).float().cuda()) | |
mesh = torch.stack((-mesh[:,:,0], -mesh[:,:,1], mesh[:,:,2]),2) # reverse x- and y-axis following PyTorch3D axis direction | |
mesh = Meshes(mesh, face, textures) | |
if R is None: | |
cameras = PerspectiveCameras(focal_length=cam_param['focal'], | |
principal_point=cam_param['princpt'], | |
device='cuda', | |
in_ndc=False, | |
image_size=torch.LongTensor(render_shape).cuda().view(1,2)) | |
else: | |
cameras = PerspectiveCameras(focal_length=cam_param['focal'], | |
principal_point=cam_param['princpt'], | |
device='cuda', | |
in_ndc=False, | |
image_size=torch.LongTensor(render_shape).cuda().view(1,2), | |
R=R, | |
T=T) | |
raster_settings = RasterizationSettings(image_size=render_shape, blur_radius=0.0, faces_per_pixel=1, bin_size=0) | |
rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings).cuda() | |
# render | |
fragments = rasterizer(mesh) | |
ret = [fragments] | |
if return_bg_mask: | |
# background masking | |
is_bkg = (fragments.zbuf <= 0).float().cpu().numpy()[0] | |
ret.append(is_bkg) | |
return tuple(ret) | |
def rasterize_points(points, cam_param, height, width, return_bg_mask=False, R=None, T=None, to_cpu=False, points_per_pixel=5, radius=0.01): | |
points = torch.stack((-points[:, 0], -points[:, 1], points[:, 2]), 1) # reverse x- and y-axis following PyTorch3D axis direction | |
device = points.device | |
if len(points.shape) == 2: | |
points = [points] | |
pointclouds = Pointclouds(points=points) | |
cam_param = {k: v.to(device)[None,:] for k,v in cam_param.items()} | |
render_shape = (height, width) # height, width | |
if R is None: | |
cameras = PerspectiveCameras(focal_length=cam_param['focal'], | |
principal_point=cam_param['princpt'], | |
device=device, | |
in_ndc=False, | |
image_size=torch.LongTensor(render_shape).to(device).view(1,2)) | |
else: | |
cameras = PerspectiveCameras(focal_length=cam_param['focal'], | |
principal_point=cam_param['princpt'], | |
device=device, | |
in_ndc=False, | |
image_size=torch.LongTensor(render_shape).to(device).view(1,2), | |
R=R, | |
T=T) | |
raster_settings = PointsRasterizationSettings(image_size=render_shape, radius=radius, points_per_pixel=points_per_pixel, max_points_per_bin=82000) | |
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings).to(device) | |
# render | |
fragments = rasterizer(pointclouds) | |
# background masking | |
ret = [fragments] | |
if return_bg_mask: | |
if to_cpu: | |
is_bkg = (fragments.zbuf <= 0).all(dim=-1, keepdim=True).float().cpu().numpy()[0] | |
else: | |
is_bkg = (fragments.zbuf <= 0).all(dim=-1, keepdim=True).float()[0] | |
ret.append(is_bkg) | |
return tuple(ret) | |
def render_points(points, cam_param, bkg, blend_ratio=1.0, return_bg_mask=False, R=None, T=None, return_fragments=False, rgbs=None): | |
points = torch.stack((-points[:, 0], -points[:, 1], points[:, 2]), 1) # reverse x- and y-axis following PyTorch3D axis direction | |
if rgbs is None: | |
rgbs = torch.ones_like(points) | |
if len(points.shape) == 2: | |
points = [points] | |
rgbs = [rgbs] | |
pointclouds = Pointclouds(points=points, features=rgbs).cuda() | |
cam_param = {k: v.cuda()[None,:] for k,v in cam_param.items()} | |
render_shape = (bkg.shape[0], bkg.shape[1]) # height, width | |
if R is None: | |
cameras = PerspectiveCameras(focal_length=cam_param['focal'], | |
principal_point=cam_param['princpt'], | |
device='cuda', | |
in_ndc=False, | |
image_size=torch.LongTensor(render_shape).cuda().view(1,2)) | |
else: | |
cameras = PerspectiveCameras(focal_length=cam_param['focal'], | |
principal_point=cam_param['princpt'], | |
device='cuda', | |
in_ndc=False, | |
image_size=torch.LongTensor(render_shape).cuda().view(1,2), | |
R=R, | |
T=T) | |
raster_settings = PointsRasterizationSettings(image_size=render_shape, radius=0.01, points_per_pixel=5) | |
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings).cuda() | |
# render | |
with torch.no_grad(): | |
fragments = rasterizer(pointclouds) | |
renderer = PointsRenderer(rasterizer=rasterizer, compositor=AlphaCompositor(background_color=(0, 0, 0))) | |
images = renderer(pointclouds) | |
# background masking | |
is_bkg = (fragments.zbuf <= 0).all(dim=-1, keepdim=True).float().cpu().numpy()[0] | |
render = images[0,:,:,:3].cpu().numpy() | |
fg = render * blend_ratio + bkg/255 * (1 - blend_ratio) | |
render = fg * (1 - is_bkg) * 255 + bkg * is_bkg | |
ret = [render] | |
if return_bg_mask: | |
ret.append(is_bkg) | |
if return_fragments: | |
ret.append(fragments) | |
return tuple(ret) | |
class RenderMesh(nn.Module): | |
def __init__(self, image_size, obj_filename=None, faces=None, device='cpu'): | |
super(RenderMesh, self).__init__() | |
self.device = device | |
self.image_size = image_size | |
if obj_filename is not None: | |
verts, faces, aux = load_obj(obj_filename, load_textures=False) | |
self.faces = faces.verts_idx | |
elif faces is not None: | |
import numpy as np | |
self.faces = torch.tensor(faces.astype(np.int32)) | |
else: | |
raise NotImplementedError('Must have faces.') | |
self.raster_settings = RasterizationSettings(image_size=image_size, blur_radius=0.0, faces_per_pixel=1) | |
self.lights = PointLights(device=device, location=[[0.0, 0.0, 3.0]]) | |
def _build_cameras(self, transform_matrix, focal_length, principal_point=None, intr=None): | |
batch_size = transform_matrix.shape[0] | |
screen_size = torch.tensor( | |
[self.image_size, self.image_size], device=self.device | |
).float()[None].repeat(batch_size, 1) | |
if principal_point is None: | |
principal_point = torch.zeros(batch_size, 2, device=self.device).float() | |
# print("==="*16, "principle_points:", principal_point) | |
# print("==="*16, "focal_length:", focal_length) | |
if intr is None: | |
cameras_kwargs = { | |
'principal_point': principal_point, 'focal_length': focal_length, | |
'image_size': screen_size, 'device': self.device, | |
} | |
else: | |
cameras_kwargs = { | |
'principal_point': principal_point, 'focal_length': torch.tensor([intr[0, 0], intr[1, 1]]).unsqueeze(0), | |
'image_size': screen_size, 'device': self.device, | |
} | |
cameras = PerspectiveCameras(**cameras_kwargs, R=transform_matrix[:, :3, :3], T=transform_matrix[:, :3, 3]) | |
return cameras | |
def forward( | |
self, vertices, cameras=None, transform_matrix=None, focal_length=None, principal_point=None, only_rasterize=False, intr=None, | |
): | |
if cameras is None: | |
cameras = self._build_cameras(transform_matrix, focal_length, principal_point=principal_point, intr=intr) | |
faces = self.faces[None].repeat(vertices.shape[0], 1, 1) | |
# Initialize each vertex to be white in color. | |
verts_rgb = torch.ones_like(vertices) # (1, V, 3) | |
textures = TexturesVertex(verts_features=verts_rgb.to(self.device)) | |
mesh = Meshes( | |
verts=vertices.to(self.device), | |
faces=faces.to(self.device), | |
textures=textures | |
) | |
renderer = MeshRendererWithFragments( | |
rasterizer=MeshRasterizer(cameras=cameras, raster_settings=self.raster_settings), | |
shader=SoftPhongShader(cameras=cameras, lights=self.lights, device=self.device) | |
) | |
render_results, fragments = renderer(mesh) | |
render_results = render_results.permute(0, 3, 1, 2) | |
if only_rasterize: | |
return fragments | |
images = render_results[:, :3] | |
alpha_images = render_results[:, 3:] | |
images[alpha_images.expand(-1, 3, -1, -1)<0.5] = 0.0 | |
return images*255, alpha_images | |
class RenderPoints(nn.Module): | |
def __init__(self, image_size, obj_filename=None, device='cpu'): | |
super(RenderPoints, self).__init__() | |
self.device = device | |
self.image_size = image_size | |
if obj_filename is not None: | |
verts = load_obj(obj_filename, load_textures=False) | |
self.raster_settings = PointsRasterizationSettings(image_size=image_size, radius=0.01, points_per_pixel=1) | |
self.lights = PointLights(device=device, location=[[0.0, 0.0, 3.0]]) | |
def _build_cameras(self, transform_matrix, focal_length, principal_point=None): | |
batch_size = transform_matrix.shape[0] | |
screen_size = torch.tensor( | |
[self.image_size, self.image_size], device=self.device | |
).float()[None].repeat(batch_size, 1) | |
if principal_point is None: | |
principal_point = torch.zeros(batch_size, 2, device=self.device).float() | |
# print("==="*16, "principle_points:", principal_point) | |
# print("==="*16, "focal_length:", focal_length) | |
cameras_kwargs = { | |
'principal_point': principal_point, 'focal_length': focal_length, | |
'image_size': screen_size, 'device': self.device, | |
} | |
cameras = PerspectiveCameras(**cameras_kwargs, R=transform_matrix[:, :3, :3], T=transform_matrix[:, :3, 3]) | |
return cameras | |
def forward( | |
self, vertices, cameras=None, transform_matrix=None, focal_length=None, principal_point=None, only_rasterize=False | |
): | |
if cameras is None: | |
cameras = self._build_cameras(transform_matrix, focal_length, principal_point=principal_point) | |
# Initialize each vertex to be white in color. | |
verts_rgb = torch.ones_like(vertices) # (1, V, 3) | |
pointclouds = Pointclouds(points=vertices, features=verts_rgb).cuda() | |
# render | |
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=self.raster_settings).cuda() | |
if only_rasterize: | |
fragments = rasterizer(pointclouds) | |
return fragments | |
renderer = PointsRenderer(rasterizer=rasterizer, compositor=AlphaCompositor(background_color=(0, 0, 0))) | |
render_results = renderer(pointclouds).permute(0, 3, 1, 2) | |
images = render_results[:, :3] | |
alpha_images = render_results[:, 3:] | |
return images*255, alpha_images |