LAM / app_lam.py
yuandong513
feat: init
17cd746
raw
history blame
17.6 kB
# Copyright (c) 2024-2025, Yisheng He, Yuan Dong
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import cv2
import base64
import subprocess
import gradio as gr
import numpy as np
from PIL import Image
import argparse
from omegaconf import OmegaConf
import torch
from lam.runners.infer.head_utils import prepare_motion_seqs, preprocess_image
import moviepy.editor as mpy
from lam.utils.ffmpeg_utils import images_to_video
import sys
from flame_tracking_single_image import FlameTrackingSingleImage
try:
import spaces
except:
pass
def launch_pretrained():
from huggingface_hub import snapshot_download, hf_hub_download
hf_hub_download(repo_id='DyrusQZ/LHM_Runtime',
repo_type='model',
filename='assets.tar',
local_dir='./')
os.system('tar -xvf assets.tar && rm assets.tar')
hf_hub_download(repo_id='DyrusQZ/LHM_Runtime',
repo_type='model',
filename='LHM-0.5B.tar',
local_dir='./')
os.system('tar -xvf LHM-0.5B.tar && rm LHM-0.5B.tar')
hf_hub_download(repo_id='DyrusQZ/LHM_Runtime',
repo_type='model',
filename='LHM_prior_model.tar',
local_dir='./')
os.system('tar -xvf LHM_prior_model.tar && rm LHM_prior_model.tar')
def launch_env_not_compile_with_cuda():
os.system('pip install chumpy')
os.system('pip uninstall -y basicsr')
os.system('pip install git+https://github.com/hitsz-zuoqi/BasicSR/')
os.system('pip install numpy==1.23.0')
os.system(
'pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt251/download.html'
)
def assert_input_image(input_image):
if input_image is None:
raise gr.Error('No image selected or uploaded!')
def prepare_working_dir():
import tempfile
working_dir = tempfile.TemporaryDirectory()
return working_dir
def init_preprocessor():
from lam.utils.preprocess import Preprocessor
global preprocessor
preprocessor = Preprocessor()
def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool,
working_dir):
image_raw = os.path.join(working_dir.name, 'raw.png')
with Image.fromarray(image_in) as img:
img.save(image_raw)
image_out = os.path.join(working_dir.name, 'rembg.png')
success = preprocessor.preprocess(image_path=image_raw,
save_path=image_out,
rmbg=remove_bg,
recenter=recenter)
assert success, f'Failed under preprocess_fn!'
return image_out
def get_image_base64(path):
with open(path, 'rb') as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
return f'data:image/png;base64,{encoded_string}'
def save_imgs_2_video(imgs, v_pth, fps):
img_lst = [imgs[i] for i in range(imgs.shape[0])]
# Convert the list of NumPy arrays to a list of ImageClip objects
clips = [mpy.ImageClip(img).set_duration(0.1) for img in img_lst] # 0.1 seconds per frame
# Concatenate the ImageClips into a single VideoClip
video = mpy.concatenate_videoclips(clips, method="compose")
# Write the VideoClip to a file
video.write_videofile(v_pth, fps=fps) # setting fps to 10 as example
def parse_configs():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str)
parser.add_argument("--infer", type=str)
args, unknown = parser.parse_known_args()
cfg = OmegaConf.create()
cli_cfg = OmegaConf.from_cli(unknown)
# parse from ENV
if os.environ.get("APP_INFER") is not None:
args.infer = os.environ.get("APP_INFER")
if os.environ.get("APP_MODEL_NAME") is not None:
cli_cfg.model_name = os.environ.get("APP_MODEL_NAME")
args.config = args.infer if args.config is None else args.config
if args.config is not None:
cfg_train = OmegaConf.load(args.config)
cfg.source_size = cfg_train.dataset.source_image_res
try:
cfg.src_head_size = cfg_train.dataset.src_head_size
except:
cfg.src_head_size = 112
cfg.render_size = cfg_train.dataset.render_image.high
_relative_path = os.path.join(
cfg_train.experiment.parent,
cfg_train.experiment.child,
os.path.basename(cli_cfg.model_name).split("_")[-1],
)
cfg.save_tmp_dump = os.path.join("exps", "save_tmp", _relative_path)
cfg.image_dump = os.path.join("exps", "images", _relative_path)
cfg.video_dump = os.path.join("exps", "videos", _relative_path) # output path
if args.infer is not None:
cfg_infer = OmegaConf.load(args.infer)
cfg.merge_with(cfg_infer)
cfg.setdefault(
"save_tmp_dump", os.path.join("exps", cli_cfg.model_name, "save_tmp")
)
cfg.setdefault("image_dump", os.path.join("exps", cli_cfg.model_name, "images"))
cfg.setdefault(
"video_dump", os.path.join("dumps", cli_cfg.model_name, "videos")
)
cfg.setdefault("mesh_dump", os.path.join("dumps", cli_cfg.model_name, "meshes"))
cfg.motion_video_read_fps = 6
cfg.merge_with(cli_cfg)
cfg.setdefault("logger", "INFO")
assert cfg.model_name is not None, "model_name is required"
return cfg, cfg_train
def demo_lam(flametracking, lam, cfg):
# @spaces.GPU(duration=80)
def core_fn(image_path: str, video_params, working_dir):
image_raw = os.path.join(working_dir.name, "raw.png")
with Image.open(image_path).convert('RGB') as img:
img.save(image_raw)
base_vid = os.path.basename(video_params).split(".")[0]
flame_params_dir = os.path.join("./assets/sample_motion/export", base_vid, "flame_param")
base_iid = os.path.basename(image_path).split('.')[0]
image_path = os.path.join("./assets/sample_input", base_iid, "images/00000_00.png")
dump_video_path = os.path.join(working_dir.name, "output.mp4")
dump_image_path = os.path.join(working_dir.name, "output.png")
# prepare dump paths
omit_prefix = os.path.dirname(image_raw)
image_name = os.path.basename(image_raw)
uid = image_name.split(".")[0]
subdir_path = os.path.dirname(image_raw).replace(omit_prefix, "")
subdir_path = (
subdir_path[1:] if subdir_path.startswith("/") else subdir_path
)
print("subdir_path and uid:", subdir_path, uid)
motion_seqs_dir = flame_params_dir
dump_image_dir = os.path.dirname(dump_image_path)
os.makedirs(dump_image_dir, exist_ok=True)
print(image_raw, motion_seqs_dir, dump_image_dir, dump_video_path)
dump_tmp_dir = dump_image_dir
if os.path.exists(dump_video_path):
return dump_image_path, dump_video_path
motion_img_need_mask = cfg.get("motion_img_need_mask", False) # False
vis_motion = cfg.get("vis_motion", False) # False
# preprocess input image: segmentation, flame params estimation
return_code = flametracking.preprocess(image_raw)
assert (return_code == 0), "flametracking preprocess failed!"
return_code = flametracking.optimize()
assert (return_code == 0), "flametracking optimize failed!"
return_code, output_dir = flametracking.export()
assert (return_code == 0), "flametracking export failed!"
image_path = os.path.join(output_dir, "images/00000_00.png")
mask_path = image_path.replace("/images/", "/fg_masks/").replace(".jpg", ".png")
print(image_path, mask_path)
aspect_standard = 1.0/1.0
source_size = cfg.source_size
render_size = cfg.render_size
render_fps = 30
# prepare reference image
image, _, _, shape_param = preprocess_image(image_path, mask_path=mask_path, intr=None, pad_ratio=0, bg_color=1.,
max_tgt_size=None, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1.0],
render_tgt_size=source_size, multiply=14, need_mask=True, get_shape_param=True)
# save masked image for vis
save_ref_img_path = os.path.join(dump_tmp_dir, "output.png")
vis_ref_img = (image[0].permute(1, 2, 0).cpu().detach().numpy() * 255).astype(np.uint8)
Image.fromarray(vis_ref_img).save(save_ref_img_path)
# prepare motion seq
src = image_path.split('/')[-3]
driven = motion_seqs_dir.split('/')[-2]
src_driven = [src, driven]
motion_seq = prepare_motion_seqs(motion_seqs_dir, None, save_root=dump_tmp_dir, fps=render_fps,
bg_color=1., aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1,0],
render_image_res=render_size, multiply=16,
need_mask=motion_img_need_mask, vis_motion=vis_motion,
shape_param=shape_param, test_sample=False, cross_id=False, src_driven=src_driven)
# start inference
motion_seq["flame_params"]["betas"] = shape_param.unsqueeze(0)
device, dtype = "cuda", torch.float32
print("start to inference...................")
with torch.no_grad():
# TODO check device and dtype
res = lam.infer_single_view(image.unsqueeze(0).to(device, dtype), None, None,
render_c2ws=motion_seq["render_c2ws"].to(device),
render_intrs=motion_seq["render_intrs"].to(device),
render_bg_colors=motion_seq["render_bg_colors"].to(device),
flame_params={k:v.to(device) for k, v in motion_seq["flame_params"].items()})
rgb = res["comp_rgb"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1
mask = res["comp_mask"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1
mask[mask < 0.5] = 0.0
rgb = rgb * mask + (1 - mask) * 1
rgb = (np.clip(rgb, 0, 1.0) * 255).astype(np.uint8)
if vis_motion:
vis_ref_img = np.tile(
cv2.resize(vis_ref_img, (rgb[0].shape[1], rgb[0].shape[0]), interpolation=cv2.INTER_AREA)[None, :, :, :],
(rgb.shape[0], 1, 1, 1),
)
rgb = np.concatenate([vis_ref_img, rgb, motion_seq["vis_motion_render"]], axis=2)
os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
save_imgs_2_video(rgb, dump_video_path, render_fps)
# images_to_video(rgb, output_path=dump_video_path, fps=30, gradio_codec=False, verbose=True)
return dump_image_path, dump_video_path
with gr.Blocks(analytics_enabled=False) as demo:
logo_url = './assets/images/logo.png'
logo_base64 = get_image_base64(logo_url)
gr.HTML(f"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1> <img src="{logo_base64}" style='height:35px; display:inline-block;'/> LAM: Large Avatar Model for One-shot Animatable Gaussian Head</h1>
</div>
</div>
""")
gr.HTML(
"""<p><h4 style="color: red;"> Notes: Inputing front-face images or face orientation close to the driven signal gets better results.</h4></p>"""
)
# DISPLAY
with gr.Row():
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id='lam_input_image'):
with gr.TabItem('Input Image'):
with gr.Row():
input_image = gr.Image(label='Input Image',
image_mode='RGB',
height=480,
width=270,
sources='upload',
type='filepath', # 'numpy',
elem_id='content_image')
# EXAMPLES
with gr.Row():
examples = [
['assets/sample_input/2w01/images/2w01.png'],
['assets/sample_input/2w02/images/2w02.png'],
['assets/sample_input/2w03/images/2w03.png'],
['assets/sample_input/2w04/images/2w04.png'],
]
gr.Examples(
examples=examples,
inputs=[input_image],
examples_per_page=20,
)
with gr.Column():
with gr.Tabs(elem_id='lam_input_video'):
with gr.TabItem('Input Video'):
with gr.Row():
video_input = gr.Video(label='Input Video',
height=480,
width=270,
interactive=False)
examples = [
'./assets/sample_motion/export/clip1/clip1.mp4',
'./assets/sample_motion/export/clip2/clip2.mp4',
'./assets/sample_motion/export/clip3/clip3.mp4',
]
gr.Examples(
examples=examples,
inputs=[video_input],
examples_per_page=20,
)
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id='lam_processed_image'):
with gr.TabItem('Processed Image'):
with gr.Row():
processed_image = gr.Image(
label='Processed Image',
image_mode='RGBA',
type='filepath',
elem_id='processed_image',
height=480,
width=270,
interactive=False)
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id='lam_render_video'):
with gr.TabItem('Rendered Video'):
with gr.Row():
output_video = gr.Video(label='Rendered Video',
format='mp4',
height=480,
width=270,
autoplay=True)
# SETTING
with gr.Row():
with gr.Column(variant='panel', scale=1):
submit = gr.Button('Generate',
elem_id='lam_generate',
variant='primary')
working_dir = gr.State()
submit.click(
fn=assert_input_image,
inputs=[input_image],
queue=False,
).success(
fn=prepare_working_dir,
outputs=[working_dir],
queue=False,
).success(
fn=core_fn,
inputs=[input_image, video_input,
working_dir], # video_params refer to smpl dir
outputs=[processed_image, output_video],
)
demo.queue()
demo.launch()
def _build_model(cfg):
from lam.models import model_dict
from lam.utils.hf_hub import wrap_model_hub
hf_model_cls = wrap_model_hub(model_dict["lam"])
model = hf_model_cls.from_pretrained(cfg.model_name)
return model
def launch_gradio_app():
os.environ.update({
'APP_ENABLED': '1',
'APP_MODEL_NAME':
'./exps/releases/lam/lam-20k/step_045500/',
'APP_INFER': './configs/inference/lam-20k-8gpu.yaml',
'APP_TYPE': 'infer.lam',
'NUMBA_THREADING_LAYER': 'omp',
})
cfg, _ = parse_configs()
lam = _build_model(cfg)
lam.to('cuda')
flametracking = FlameTrackingSingleImage(output_dir='tracking_output',
alignment_model_path='./pretrain_model/68_keypoints_model.pkl',
vgghead_model_path='./pretrain_model/vgghead/vgg_heads_l.trcd',
human_matting_path='./pretrain_model/matting/stylematte_synth.pt',
facebox_model_path='./pretrain_model/FaceBoxesV2.pth',
detect_iris_landmarks=True)
demo_lam(flametracking, lam, cfg)
if __name__ == '__main__':
# launch_pretrained()
# launch_env_not_compile_with_cuda()
launch_gradio_app()