File size: 61,038 Bytes
17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 |
#
# Toyota Motor Europe NV/SA and its affiliated companies retain all intellectual
# property and proprietary rights in and to this software and related documentation.
# Any commercial use, reproduction, disclosure or distribution of this software and
# related documentation without an express license agreement from Toyota Motor Europe NV/SA
# is strictly prohibited.
#
from vhap.config.base import import_module, PhotometricStageConfig, BaseTrackingConfig
from vhap.model.flame import FlameHead, FlameTexPCA, FlameTexPainted, FlameUvMask
from vhap.model.lbs import batch_rodrigues
from vhap.util.mesh import (
get_mtl_content,
get_obj_content,
normalize_image_points,
)
from vhap.util.log import get_logger
from vhap.util.visualization import plot_landmarks_2d
from torch.utils.tensorboard import SummaryWriter
import torch
import torchvision
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
from matplotlib import cm
from typing import Literal
from functools import partial
import tyro
import yaml
from datetime import datetime
import threading
from typing import Optional
from collections import defaultdict
from copy import deepcopy
import time
import os
class FlameTracker:
def __init__(self, cfg: BaseTrackingConfig):
self.cfg = cfg
self.device = cfg.device
self.tb_writer = None
# model
self.flame = FlameHead(
cfg.model.n_shape,
cfg.model.n_expr,
add_teeth=cfg.model.add_teeth,
remove_lip_inside=cfg.model.remove_lip_inside,
face_clusters=cfg.model.tex_clusters,
).to(self.device)
if cfg.model.tex_painted:
self.flame_tex_painted = FlameTexPainted(tex_size=cfg.model.tex_resolution).to(self.device)
else:
self.flame_tex_pca = FlameTexPCA(cfg.model.n_tex, tex_size=cfg.model.tex_resolution).to(self.device)
self.flame_uvmask = FlameUvMask().to(self.device)
# renderer for visualization, dense photometric energy
if self.cfg.render.backend == 'nvdiffrast':
from vhap.util.render_nvdiffrast import NVDiffRenderer
self.render = NVDiffRenderer(
use_opengl=self.cfg.render.use_opengl,
lighting_type=self.cfg.render.lighting_type,
lighting_space=self.cfg.render.lighting_space,
disturb_rate_fg=self.cfg.render.disturb_rate_fg,
disturb_rate_bg=self.cfg.render.disturb_rate_bg,
fid2cid=self.flame.mask.fid2cid,
)
elif self.cfg.render.backend == 'pytorch3d':
from vhap.util.render_pytorch3d import PyTorch3DRenderer
self.render = PyTorch3DRenderer()
else:
raise NotImplementedError(f"Unknown renderer backend: {self.cfg.render.backend}")
def load_from_tracked_flame_params(self, fp):
"""
loads checkpoint from tracked_flame_params file. Counterpart to save_result()
:param fp:
:return:
"""
report = np.load(fp)
# LOADING PARAMETERS
def load_param(param, ckpt_array):
param.data[:] = torch.from_numpy(ckpt_array).to(param.device)
def load_param_list(param_list, ckpt_array):
for i in range(min(len(param_list), len(ckpt_array))):
load_param(param_list[i], ckpt_array[i])
load_param_list(self.rotation, report["rotation"])
load_param_list(self.translation, report["translation"])
load_param_list(self.neck_pose, report["neck_pose"])
load_param_list(self.jaw_pose, report["jaw_pose"])
load_param_list(self.eyes_pose, report["eyes_pose"])
load_param(self.shape, report["shape"])
load_param_list(self.expr, report["expr"])
load_param(self.lights, report["lights"])
# self.frame_idx = report["n_processed_frames"]
if not self.calibrated:
load_param(self.focal_length, report["focal_length"])
if not self.cfg.model.tex_painted:
if "tex" in report:
load_param(self.tex_pca, report["tex"])
else:
self.logger.warn("No tex_extra found in flame_params!")
if self.cfg.model.tex_extra:
if "tex_extra" in report:
load_param(self.tex_extra, report["tex_extra"])
else:
self.logger.warn("No tex_extra found in flame_params!")
if self.cfg.model.use_static_offset:
if "static_offset" in report:
load_param(self.static_offset, report["static_offset"])
else:
self.logger.warn("No static_offset found in flame_params!")
if self.cfg.model.use_dynamic_offset:
if "dynamic_offset" in report:
load_param_list(self.dynamic_offset, report["dynamic_offset"])
else:
self.logger.warn("No dynamic_offset found in flame_params!")
def trimmed_decays(self, is_init):
decays = {}
for k, v in self.decays.items():
if is_init and "init" in k or not is_init and "init" not in k:
decays[k.replace("_init", "")] = v
return decays
def clear_cache(self):
self.render.clear_cache()
def get_current_frame(self, frame_idx, include_keyframes=False):
"""
Creates a single item batch from the frame data at index frame_idx in the dataset.
If include_keyframes option is set, keyframe data will be appended to the batch. However,
it is guaranteed that the frame data belonging to frame_idx is at position 0
:param frame_idx:
:return:
"""
indices = [frame_idx]
if include_keyframes:
indices += self.cfg.exp.keyframes
samples = []
for idx in indices:
sample = self.dataset.getitem_by_timestep(idx)
# sample["timestep_index"] = idx
# for k, v in sample.items():
# if isinstance(v, torch.Tensor):
# sample[k] = v[None, ...].to(self.device)
samples.append(sample)
# if also keyframes have been loaded, stack all data
sample = {}
for k, v in samples[0].items():
values = [s[k] for s in samples]
if isinstance(v, torch.Tensor):
values = torch.cat(values, dim=0)
sample[k] = values
if "lmk2d_iris" in sample:
sample["lmk2d"] = torch.cat([sample["lmk2d"], sample["lmk2d_iris"]], dim=1)
return sample
def fill_cam_params_into_sample(self, sample):
"""
Adds intrinsics and extrinics to sample, if data is not calibrated
"""
if self.calibrated:
assert "intrinsic" in sample
assert "extrinsic" in sample
else:
b, _, h, w = sample["rgb"].shape
# K = torch.eye(3, 3).to(self.device)
# denormalize cam params
f = self.focal_length * max(h, w)
cx, cy = torch.tensor([[0.5*w], [0.5*h]]).to(f)
sample["intrinsic"] = torch.stack([f, f, cx, cy], dim=1)
sample["extrinsic"] = self.RT[None, ...].expand(b, -1, -1)
def configure_optimizer(self, params, lr_scale=1.0):
"""
Creates optimizer for the given set of parameters
:param params:
:return:
"""
# copy dict because we will call 'pop'
params = params.copy()
param_groups = []
default_lr = self.cfg.lr.base
# dict map group name to param dict keys
group_def = {
"translation": ["translation"],
"expr": ["expr"],
"light": ["lights"],
}
if not self.calibrated:
group_def ["cam"] = ["cam"]
if self.cfg.model.use_static_offset:
group_def ["static_offset"] = ["static_offset"]
if self.cfg.model.use_dynamic_offset:
group_def ["dynamic_offset"] = ["dynamic_offset"]
# dict map group name to lr
group_lr = {
"translation": self.cfg.lr.translation,
"expr": self.cfg.lr.expr,
"light": self.cfg.lr.light,
}
if not self.calibrated:
group_lr["cam"] = self.cfg.lr.camera
if self.cfg.model.use_static_offset:
group_lr["static_offset"] = self.cfg.lr.static_offset
if self.cfg.model.use_dynamic_offset:
group_lr["dynamic_offset"] = self.cfg.lr.dynamic_offset
for group_name, param_keys in group_def.items():
selected = []
for p in param_keys:
if p in params:
selected += params.pop(p)
if len(selected) > 0:
param_groups.append({"params": selected, "lr": group_lr[group_name] * lr_scale})
# create default group with remaining params
selected = []
for _, v in params.items():
selected += v
param_groups.append({"params": selected})
optim = torch.optim.Adam(param_groups, lr=default_lr * lr_scale)
return optim
def initialize_frame(self, frame_idx):
"""
Initializes parameters of frame frame_idx
:param frame_idx:
:return:
"""
if frame_idx > 0:
self.initialize_from_previous(frame_idx)
def initialize_from_previous(self, frame_idx):
"""
Initializes the flame parameters with the optimized ones from the previous frame
:param frame_idx:
:return:
"""
if frame_idx == 0:
return
param_list = [
self.expr,
self.neck_pose,
self.jaw_pose,
self.translation,
self.rotation,
self.eyes_pose,
]
for param in param_list:
param[frame_idx].data = param[frame_idx - 1].detach().clone().data
def select_frame_indices(self, frame_idx, include_keyframes):
indices = [frame_idx]
if include_keyframes:
indices += self.cfg.exp.keyframes
return indices
def forward_flame(self, frame_idx, include_keyframes):
"""
Evaluates the flame model using the given parameters
:param flame_params:
:return:
"""
indices = self.select_frame_indices(frame_idx, include_keyframes)
dynamic_offset = self.to_batch(self.dynamic_offset, indices) if self.cfg.model.use_dynamic_offset else None
ret = self.flame(
self.shape[None, ...].expand(len(indices), -1),
self.to_batch(self.expr, indices),
self.to_batch(self.rotation, indices),
self.to_batch(self.neck_pose, indices),
self.to_batch(self.jaw_pose, indices),
self.to_batch(self.eyes_pose, indices),
self.to_batch(self.translation, indices),
return_verts_cano=True,
static_offset=self.static_offset,
dynamic_offset=dynamic_offset,
)
verts, verts_cano, lmks = ret[0], ret[1], ret[2]
albedos = self.get_albedo().expand(len(indices), -1, -1, -1)
return verts, verts_cano, lmks, albedos
def get_base_texture(self):
if self.cfg.model.tex_extra and not self.cfg.model.residual_tex:
albedos_base = self.tex_extra[None, ...]
else:
if self.cfg.model.tex_painted:
albedos_base = self.flame_tex_painted()
else:
albedos_base = self.flame_tex_pca(self.tex_pca[None, :])
return albedos_base
def get_albedo(self):
albedos_base = self.get_base_texture()
if self.cfg.model.tex_extra and self.cfg.model.residual_tex:
albedos_res = self.tex_extra[None, :]
if albedos_base.shape[-1] != albedos_res.shape[-1] or albedos_base.shape[-2] != albedos_res.shape[-2]:
albedos_base = F.interpolate(albedos_base, albedos_res.shape[-2:], mode='bilinear')
albedos = albedos_base + albedos_res
else:
albedos = albedos_base
return albedos
def rasterize_flame(
self, sample, verts, faces, camera_index=None, train_mode=False
):
"""
Rasterizes the flame head mesh
:param verts:
:param albedos:
:param K:
:param RT:
:param resolution:
:param use_cache:
:return:
"""
# cameras parameters
K = sample["intrinsic"].clone().to(self.device)
RT = sample["extrinsic"].to(self.device)
if camera_index is not None:
K = K[[camera_index]]
RT = RT[[camera_index]]
H, W = self.image_size
image_size = H, W
# rasterize fragments
rast_dict = self.render.rasterize(verts, faces, RT, K, image_size, False, train_mode)
return rast_dict
@torch.no_grad()
def get_background_color(self, gt_rgb, gt_alpha, stage):
if stage is None: # when stage is None, it means we are in the evaluation mode
background = self.cfg.render.background_eval
else:
background = self.cfg.render.background_train
if background == 'target':
"""use gt_rgb as background"""
color = gt_rgb.permute(0, 2, 3, 1)
elif background == 'white':
color = [1, 1, 1]
elif background == 'black':
color = [0, 0, 0]
else:
raise NotImplementedError(f"Unknown background mode: {background}")
return color
def render_rgba(
self, rast_dict, verts, faces, albedos, lights, background_color=[1, 1, 1],
align_texture_except_fid=None, align_boundary_except_vid=None, enable_disturbance=False,
):
"""
Renders the rgba image from the rasterization result and
the optimized texture + lights
"""
faces_uv = self.flame.textures_idx
if self.cfg.render.backend == 'nvdiffrast':
verts_uv = self.flame.verts_uvs.clone()
verts_uv[:, 1] = 1 - verts_uv[:, 1]
tex = albedos
render_out = self.render.render_rgba(
rast_dict, verts, faces, verts_uv, faces_uv, tex, lights, background_color,
align_texture_except_fid, align_boundary_except_vid, enable_disturbance
)
render_out = {k: v.permute(0, 3, 1, 2) for k, v in render_out.items()}
elif self.cfg.render.backend == 'pytorch3d':
B = verts.shape[0] # TODO: double check
verts_uv = self.flame.face_uvcoords.repeat(B, 1, 1)
tex = albedos.expand(B, -1, -1, -1)
rgba = self.render.render_rgba(
rast_dict, verts, faces, verts_uv, faces_uv, tex, lights, background_color
)
render_out = {'rgba': rgba.permute(0, 3, 1, 2)}
else:
raise NotImplementedError(f"Unknown renderer backend: {self.cfg.render.backend}")
return render_out
def render_normal(self, rast_dict, verts, faces):
"""
Renders the rgba image from the rasterization result and
the optimized texture + lights
"""
uv_coords = self.flame.face_uvcoords
uv_coords = uv_coords.repeat(verts.shape[0], 1, 1)
return self.render.render_normal(rast_dict, verts, faces, uv_coords)
def compute_lmk_energy(self, sample, pred_lmks, disable_jawline_landmarks=False):
"""
Computes the landmark energy loss term between groundtruth landmarks and flame landmarks
:param sample:
:param pred_lmks:
:return: the lmk loss for all 68 facial landmarks, a separate 2 pupil landmark loss and
a relative eye close term
"""
img_size = sample["rgb"].shape[-2:]
# ground-truth landmark
lmk2d = sample["lmk2d"].clone().to(pred_lmks)
lmk2d, confidence = lmk2d[:, :, :2], lmk2d[:, :, 2]
lmk2d[:, :, 0], lmk2d[:, :, 1] = normalize_image_points(
lmk2d[:, :, 0], lmk2d[:, :, 1], img_size
)
# predicted landmark
K = sample["intrinsic"].to(self.device)
RT = sample["extrinsic"].to(self.device)
pred_lmk_ndc = self.render.world_to_ndc(pred_lmks, RT, K, img_size, flip_y=True)
pred_lmk2d = pred_lmk_ndc[:, :, :2]
if (lmk2d.shape[1] == 70):
diff = lmk2d - pred_lmk2d
confidence = confidence[:, :70]
# eyes weighting
confidence[:, 68:] = confidence[:, 68:] * 2
else:
diff = lmk2d[:, :68] - pred_lmk2d[:, :68]
confidence = confidence[:, :68]
# compute general landmark term
lmk_loss = torch.norm(diff, dim=2, p=1) * confidence
result_dict = {
"gt_lmk2d": lmk2d,
"pred_lmk2d": pred_lmk2d,
}
return lmk_loss.mean(), result_dict
def compute_photometric_energy(
self,
sample,
verts,
faces,
albedos,
rast_dict,
step_i=None,
stage=None,
include_keyframes=False,
):
"""
Computes the dense photometric energy
:param sample:
:param vertices:
:param albedos:
:return:
"""
gt_rgb = sample["rgb"].to(verts)
if "alpha" in sample:
gt_alpha = sample["alpha_map"].to(verts)
else:
gt_alpha = None
lights = self.lights[None] if self.lights is not None else None
bg_color = self.get_background_color(gt_rgb, gt_alpha, stage)
align_texture_except_fid = self.flame.mask.get_fid_by_region(
self.cfg.pipeline[stage].align_texture_except
) if stage is not None else None
align_boundary_except_vid = self.flame.mask.get_vid_by_region(
self.cfg.pipeline[stage].align_boundary_except
) if stage is not None else None
render_out = self.render_rgba(
rast_dict, verts, faces, albedos, lights, bg_color,
align_texture_except_fid, align_boundary_except_vid,
enable_disturbance=stage!=None,
)
pred_rgb = render_out['rgba'][:, :3]
pred_alpha = render_out['rgba'][:, 3:]
pred_mask = render_out['rgba'][:, [3]].detach() > 0
pred_mask = pred_mask.expand(-1, 3, -1, -1)
results_dict = render_out
# ---- rgb loss ----
error_rgb = gt_rgb - pred_rgb
color_loss = error_rgb.abs().sum() / pred_mask.detach().sum()
results_dict.update(
{
"gt_rgb": gt_rgb,
"pred_rgb": pred_rgb,
"error_rgb": error_rgb,
"pred_alpha": pred_alpha,
}
)
# ---- silhouette loss ----
# error_alpha = gt_alpha - pred_alpha
# mask_loss = error_alpha.abs().sum()
# results_dict.update(
# {
# "gt_alpha": gt_alpha,
# "error_alpha": error_alpha,
# }
# )
# ---- background loss ----
# bg_mask = gt_alpha < 0.5
# error_alpha = gt_alpha - pred_alpha
# error_alpha = torch.where(bg_mask, error_alpha, torch.zeros_like(error_alpha))
# mask_loss = error_alpha.abs().sum() / bg_mask.sum()
# results_dict.update(
# {
# "gt_alpha": gt_alpha,
# "error_alpha": error_alpha,
# }
# )
# --------
# photo_loss = color_loss + mask_loss
photo_loss = color_loss
# photo_loss = mask_loss
return photo_loss, results_dict
def compute_regularization_energy(self, result_dict, verts, verts_cano, lmks, albedos, frame_idx, include_keyframes, stage):
"""
Computes the energy term that penalizes strong deviations from the flame base model
"""
log_dict = {}
std_tex = 1
std_expr = 1
std_shape = 1
indices = self.select_frame_indices(frame_idx, include_keyframes)
# pose smoothness term
if self.opt_dict['pose'] and 'tracking' in stage:
E_pose_smooth = self.compute_pose_smooth_energy(frame_idx, stage=='global_tracking')
log_dict["pose_smooth"] = E_pose_smooth
# joint regularization term
if self.opt_dict['joints']:
if 'tracking' in stage:
joint_smooth = self.compute_joint_smooth_energy(frame_idx, stage=='global_tracking')
log_dict["joint_smooth"] = joint_smooth
joint_prior = self.compute_joint_prior_energy(frame_idx)
log_dict["joint_prior"] = joint_prior
# expression regularization
if self.opt_dict['expr']:
expr = self.to_batch(self.expr, indices)
reg_expr = (expr / std_expr) ** 2
log_dict["reg_expr"] = self.cfg.w.reg_expr * reg_expr.mean()
# shape regularization
if self.opt_dict['shape']:
reg_shape = (self.shape / std_shape) ** 2
log_dict["reg_shape"] = self.cfg.w.reg_shape * reg_shape.mean()
# texture regularization
if self.opt_dict['texture']:
# texture space
if not self.cfg.model.tex_painted:
reg_tex_pca = (self.tex_pca / std_tex) ** 2
log_dict["reg_tex_pca"] = self.cfg.w.reg_tex_pca * reg_tex_pca.mean()
# texture map
if self.cfg.model.tex_extra:
if self.cfg.model.residual_tex:
if self.cfg.w.reg_tex_res is not None:
reg_tex_res = self.tex_extra ** 2
# reg_tex_res = self.tex_extra.abs() # L1 loss can create noise textures
# if len(self.cfg.model.occluded) > 0:
# mask = (~self.flame_uvmask.get_uvmask_by_region(self.cfg.model.occluded)).float()[None, ...]
# reg_tex_res *= mask
log_dict["reg_tex_res"] = self.cfg.w.reg_tex_res * reg_tex_res.mean()
if self.cfg.w.reg_tex_tv is not None:
tex = self.get_albedo()[0] # (3, H, W)
tv_y = (tex[..., :-1, :] - tex[..., 1:, :]) ** 2
tv_x = (tex[..., :, :-1] - tex[..., :, 1:]) ** 2
tv = tv_y.reshape(tv_y.shape[0], -1) + tv_x.reshape(tv_x.shape[0], -1)
w_reg_tex_tv = self.cfg.w.reg_tex_tv * self.cfg.data.scale_factor ** 2
if self.cfg.data.n_downsample_rgb is not None:
w_reg_tex_tv /= (self.cfg.data.n_downsample_rgb ** 2)
log_dict["reg_tex_tv"] = w_reg_tex_tv * tv.mean()
if self.cfg.w.reg_tex_res_clusters is not None:
mask_sclerae = self.flame_uvmask.get_uvmask_by_region(self.cfg.w.reg_tex_res_for)[None, :, :]
reg_tex_res_clusters = self.tex_extra ** 2 * mask_sclerae
log_dict["reg_tex_res_clusters"] = self.cfg.w.reg_tex_res_clusters * reg_tex_res_clusters.mean()
# lighting parameters regularization
if self.opt_dict['lights']:
if self.cfg.w.reg_light is not None and self.lights is not None:
reg_light = (self.lights - self.lights_uniform) ** 2
log_dict["reg_light"] = self.cfg.w.reg_light * reg_light.mean()
if self.cfg.w.reg_diffuse is not None and self.lights is not None:
diffuse = result_dict['diffuse_detach_normal']
reg_diffuse = F.relu(diffuse.max() - 1) + diffuse.var(dim=1).mean()
log_dict["reg_diffuse"] = self.cfg.w.reg_diffuse * reg_diffuse
# offset regularization
if self.opt_dict['static_offset'] or self.opt_dict['dynamic_offset']:
if self.static_offset is not None or self.dynamic_offset is not None:
offset = 0
if self.static_offset is not None:
offset += self.static_offset
if self.dynamic_offset is not None:
offset += self.to_batch(self.dynamic_offset, indices)
if self.cfg.w.reg_offset_lap is not None:
# laplacian loss
vert_wo_offset = (verts_cano - offset).detach()
reg_offset_lap = self.compute_laplacian_smoothing_loss(
vert_wo_offset, vert_wo_offset + offset
)
if len(self.cfg.w.reg_offset_lap_relax_for) > 0:
w = self.scale_vertex_weights_by_region(
weights=torch.ones_like(verts[:, :, :1]),
scale_factor=self.cfg.w.reg_offset_lap_relax_coef,
region=self.cfg.w.reg_offset_lap_relax_for,
)
reg_offset_lap *= w
log_dict["reg_offset_lap"] = self.cfg.w.reg_offset_lap * reg_offset_lap.mean()
if self.cfg.w.reg_offset is not None:
# norm loss
# reg_offset = offset.norm(dim=-1, keepdim=True)
reg_offset = offset.abs()
if len(self.cfg.w.reg_offset_relax_for) > 0:
w = self.scale_vertex_weights_by_region(
weights=torch.ones_like(verts[:, :, :1]),
scale_factor=self.cfg.w.reg_offset_relax_coef,
region=self.cfg.w.reg_offset_relax_for,
)
reg_offset *= w
log_dict["reg_offset"] = self.cfg.w.reg_offset * reg_offset.mean()
if self.cfg.w.reg_offset_rigid is not None:
reg_offset_rigid = 0
for region in self.cfg.w.reg_offset_rigid_for:
vids = self.flame.mask.get_vid_by_region([region])
reg_offset_rigid += offset[:, vids, :].var(dim=-2).mean()
log_dict["reg_offset_rigid"] = self.cfg.w.reg_offset_rigid * reg_offset_rigid
if self.cfg.w.reg_offset_dynamic is not None and self.dynamic_offset is not None and self.opt_dict['dynamic_offset']:
# The dynamic offset is regularized to be temporally smooth
if frame_idx == 0:
reg_offset_d = torch.zeros_like(self.dynamic_offset[0])
offset_d = self.dynamic_offset[0]
else:
reg_offset_d = torch.stack([self.dynamic_offset[0], self.dynamic_offset[frame_idx - 1]])
offset_d = self.dynamic_offset[frame_idx]
reg_offset_dynamic = ((offset_d - reg_offset_d) ** 2).mean()
log_dict["reg_offset_dynamic"] = self.cfg.w.reg_offset_dynamic * reg_offset_dynamic
return log_dict
def scale_vertex_weights_by_region(self, weights, scale_factor, region):
indices = self.flame.mask.get_vid_by_region(region)
weights[:, indices] *= scale_factor
for _ in range(self.cfg.w.blur_iter):
M = self.flame.laplacian_matrix_negate_diag[None, ...]
weights = M.bmm(weights) / 2
return weights
def compute_pose_smooth_energy(self, frame_idx, use_next_frame=False):
"""
Regularizes the global pose of the flame head model to be temporally smooth
"""
idx = frame_idx
idx_prev = np.clip(idx - 1, 0, self.n_timesteps - 1)
if use_next_frame:
idx_next = np.clip(idx + 1, 0, self.n_timesteps - 1)
ref_indices = [idx_prev, idx_next]
else:
ref_indices = [idx_prev]
E_trans = ((self.translation[[idx]] - self.translation[ref_indices].detach()) ** 2).mean() * self.cfg.w.smooth_trans
E_rot = ((self.rotation[[idx]] - self.rotation[ref_indices].detach()) ** 2).mean() * self.cfg.w.smooth_rot
return E_trans + E_rot
def compute_joint_smooth_energy(self, frame_idx, use_next_frame=False):
"""
Regularizes the joints of the flame head model to be temporally smooth
"""
idx = frame_idx
idx_prev = np.clip(idx - 1, 0, self.n_timesteps - 1)
if use_next_frame:
idx_next = np.clip(idx + 1, 0, self.n_timesteps - 1)
ref_indices = [idx_prev, idx_next]
else:
ref_indices = [idx_prev]
E_joint_smooth = 0
E_joint_smooth += ((self.neck_pose[[idx]] - self.neck_pose[ref_indices].detach()) ** 2).mean() * self.cfg.w.smooth_neck
E_joint_smooth += ((self.jaw_pose[[idx]] - self.jaw_pose[ref_indices].detach()) ** 2).mean() * self.cfg.w.smooth_jaw
E_joint_smooth += ((self.eyes_pose[[idx]] - self.eyes_pose[ref_indices].detach()) ** 2).mean() * self.cfg.w.smooth_eyes
return E_joint_smooth
def compute_joint_prior_energy(self, frame_idx):
"""
Regularizes the joints of the flame head model towards neutral joint locations
"""
poses = [
("neck", self.neck_pose[[frame_idx], :]),
("jaw", self.jaw_pose[[frame_idx], :]),
("eyes", self.eyes_pose[[frame_idx], :3]),
("eyes", self.eyes_pose[[frame_idx], 3:]),
]
# Joints should are regularized towards neural
E_joint_prior = 0
for name, pose in poses:
# L2 regularization for each joint
rotmats = batch_rodrigues(torch.cat([torch.zeros_like(pose), pose], dim=0))
diff = ((rotmats[[0]] - rotmats[1:]) ** 2).mean()
# Additional regularization for physical plausibility
if name == 'jaw':
# penalize negative rotation along x axis of jaw
diff += F.relu(-pose[:, 0]).mean() * 10
# penalize rotation along y and z axis of jaw
diff += (pose[:, 1:] ** 2).mean() * 3
elif name == 'eyes':
# penalize the difference between the two eyes
diff += ((self.eyes_pose[[frame_idx], :3] - self.eyes_pose[[frame_idx], 3:]) ** 2).mean()
E_joint_prior += diff * self.cfg.w[f"prior_{name}"]
return E_joint_prior
def compute_laplacian_smoothing_loss(self, verts, offset_verts):
L = self.flame.laplacian_matrix[None, ...].detach() # (1, V, V)
basis_lap = L.bmm(verts).detach() #.norm(dim=-1) * weights
offset_lap = L.bmm(offset_verts) #.norm(dim=-1) # * weights
diff = (offset_lap - basis_lap) ** 2
diff = diff.sum(dim=-1, keepdim=True)
return diff
def compute_energy(
self,
sample,
frame_idx,
include_keyframes=False,
step_i=None,
stage=None,
):
"""
Compute total energy for frame frame_idx
:param sample:
:param frame_idx:
:param include_keyframes: if key frames shall be included when predicting the per
frame energy
:return: loss, log dict, predicted vertices and landmarks
"""
log_dict = {}
gt_rgb = sample["rgb"]
result_dict = {"gt_rgb": gt_rgb}
verts, verts_cano, lmks, albedos = self.forward_flame(frame_idx, include_keyframes)
faces = self.flame.faces
if isinstance(sample["num_cameras"], list):
num_cameras = sample["num_cameras"][0]
else:
num_cameras = sample["num_cameras"]
# albedos = self.repeat_n_times(albedos, num_cameras) # only needed for pytorch3d renderer
if self.cfg.w.landmark is not None:
lmks_n = self.repeat_n_times(lmks, num_cameras)
if not self.cfg.w.always_enable_jawline_landmarks and stage is not None:
disable_jawline_landmarks = self.cfg.pipeline[stage]['disable_jawline_landmarks']
else:
disable_jawline_landmarks = False
E_lmk, _result_dict = self.compute_lmk_energy(sample, lmks_n, disable_jawline_landmarks)
log_dict["lmk"] = self.cfg.w.landmark * E_lmk
result_dict.update(_result_dict)
if stage is None or isinstance(self.cfg.pipeline[stage], PhotometricStageConfig):
if self.cfg.w.photo is not None:
verts_n = self.repeat_n_times(verts, num_cameras)
rast_dict = self.rasterize_flame(
sample, verts_n, self.flame.faces, train_mode=True
)
photo_energy_func = self.compute_photometric_energy
E_photo, _result_dict = photo_energy_func(
sample,
verts,
faces,
albedos,
rast_dict,
step_i,
stage,
include_keyframes,
)
result_dict.update(_result_dict)
log_dict["photo"] = self.cfg.w.photo * E_photo
if stage is not None:
_log_dict = self.compute_regularization_energy(
result_dict, verts, verts_cano, lmks, albedos, frame_idx, include_keyframes, stage
)
log_dict.update(_log_dict)
E_total = torch.stack([v for k, v in log_dict.items()]).sum()
log_dict["total"] = E_total
return E_total, log_dict, verts, faces, lmks, albedos, result_dict
@staticmethod
def to_batch(x, indices):
return torch.stack([x[i] for i in indices])
@staticmethod
def repeat_n_times(x: torch.Tensor, n: int):
"""Expand a tensor from shape [F, ...] to [F*n, ...]"""
return x.unsqueeze(1).repeat_interleave(n, dim=1).reshape(-1, *x.shape[1:])
@torch.no_grad()
def log_scalars(
self,
log_dict,
frame_idx,
session: Literal["train", "eval"] = "train",
stage=None,
frame_step=None,
# step_in_stage=None,
):
"""
Logs scalars in log_dict to tensorboard and self.logger
:param log_dict:
:param frame_idx:
:param step_i:
:return:
"""
if not self.calibrated and stage is not None and 'cam' in self.cfg.pipeline[stage].optimizable_params:
log_dict["focal_length"] = self.focal_length.squeeze(0)
log_msg = ""
if session == "train":
global_step = self.global_step
else:
global_step = frame_idx
for k, v in log_dict.items():
if not k.startswith("decay"):
log_msg += "{}: {:.4f} ".format(k, v)
if self.tb_writer is not None:
self.tb_writer.add_scalar(f"{session}/{k}", v, global_step)
if session == "train":
assert stage is not None
if frame_step is not None:
msg_prefix = f"[{session}-{stage}] frame {frame_idx} step {frame_step}: "
else:
msg_prefix = f"[{session}-{stage}] frame {frame_idx} step {self.global_step}: "
elif session == "eval":
msg_prefix = f"[{session}] frame {frame_idx}: "
self.logger.info(msg_prefix + log_msg)
def save_obj_with_texture(self, vertices, faces, uv_coordinates, uv_indices, albedos, obj_path, mtl_path, texture_path):
# Save the texture image
torchvision.utils.save_image(albedos.squeeze(0), texture_path)
# Create the MTL file
with open(mtl_path, 'w') as f:
f.write(get_mtl_content(texture_path.name))
# Create the obj file
with open(obj_path, 'w') as f:
f.write(get_obj_content(vertices, faces, uv_coordinates, uv_indices, mtl_path.name))
def async_func(func):
"""Decorator to run a function asynchronously"""
def wrapper(*args, **kwargs):
self = args[0]
if self.cfg.async_func:
thread = threading.Thread(target=func, args=args, kwargs=kwargs)
thread.start()
else:
func(*args, **kwargs)
return wrapper
@torch.no_grad()
@async_func
def log_media(
self,
verts: torch.tensor,
faces: torch.tensor,
lmks: torch.tensor,
albedos: torch.tensor,
output_dict: dict,
sample: dict,
frame_idx: int,
session: str,
stage: Optional[str]=None,
frame_step: int=None,
epoch=None,
):
"""
Logs current tracking visualization to tensorboard
:param verts:
:param lmks:
:param sample:
:param frame_idx:
:param frame_step:
:param show_lmks:
:param show_overlay:
:return:
"""
tic = time.time()
prepare_output_path = partial(
self.prepare_output_path,
session=session,
frame_idx=frame_idx,
stage=stage,
step=frame_step,
epoch=epoch,
)
"""images"""
if not self.cfg.w.always_enable_jawline_landmarks and stage is not None:
disable_jawline_landmarks = self.cfg.pipeline[stage]['disable_jawline_landmarks']
else:
disable_jawline_landmarks = False
img = self.visualize_tracking(verts, lmks, albedos, output_dict, sample, disable_jawline_landmarks=disable_jawline_landmarks)
img_path = prepare_output_path(folder_name="image_grid", file_type=self.cfg.log.image_format)
torchvision.utils.save_image(img, img_path)
"""meshes"""
texture_path = prepare_output_path(folder_name="mesh", file_type=self.cfg.log.image_format)
mtl_path = prepare_output_path(folder_name="mesh", file_type="mtl")
obj_path = prepare_output_path(folder_name="mesh", file_type="obj")
vertices = verts.squeeze(0).detach().cpu().numpy()
faces = faces.detach().cpu().numpy()
uv_coordinates = self.flame.verts_uvs.cpu().numpy()
uv_indices = self.flame.textures_idx.cpu().numpy()
self.save_obj_with_texture(vertices, faces, uv_coordinates, uv_indices, albedos, obj_path, mtl_path, texture_path)
""""""
toc = time.time() - tic
if stage is not None:
msg_prefix = f"[{session}-{stage}] frame {frame_idx}"
else:
msg_prefix = f"[{session}] frame {frame_idx}"
if frame_step is not None:
msg_prefix += f" step {frame_step}"
self.logger.info(f"{msg_prefix}: Logging media took {toc:.2f}s")
@torch.no_grad()
def visualize_tracking(
self,
verts,
lmks,
albedos,
output_dict,
sample,
return_imgs_seperately=False,
disable_jawline_landmarks=False,
):
"""
Visualizes the tracking result
"""
if len(self.cfg.log.view_indices) > 0:
view_indices = torch.tensor(self.cfg.log.view_indices)
else:
num_views = sample["rgb"].shape[0]
if num_views > 1:
step = (num_views - 1) // (self.cfg.log.max_num_views - 1)
view_indices = torch.arange(0, num_views, step=step)
else:
view_indices = torch.tensor([0])
num_views_log = len(view_indices)
imgs = []
# rgb
gt_rgb = output_dict["gt_rgb"][view_indices].cpu()
transfm = torchvision.transforms.Resize(gt_rgb.shape[-2:])
imgs += [img[None] for img in gt_rgb]
if "pred_rgb" in output_dict:
pred_rgb = transfm(output_dict["pred_rgb"][view_indices].cpu())
pred_rgb = torch.clip(pred_rgb, min=0, max=1)
imgs += [img[None] for img in pred_rgb]
if "error_rgb" in output_dict:
error_rgb = transfm(output_dict["error_rgb"][view_indices].cpu())
error_rgb = error_rgb.mean(dim=1) / 2 + 0.5
cmap = cm.get_cmap("seismic")
error_rgb = cmap(error_rgb.cpu())
error_rgb = torch.from_numpy(error_rgb[..., :3]).to(gt_rgb).permute(0, 3, 1, 2)
imgs += [img[None] for img in error_rgb]
# cluster id
if "cid" in output_dict:
cid = transfm(output_dict["cid"][view_indices].cpu())
cid = cid / cid.max()
cid = cid.expand(-1, 3, -1, -1).clone()
pred_alpha = transfm(output_dict["pred_alpha"][view_indices].cpu()).expand(-1, 3, -1, -1)
bg = pred_alpha == 0
cid[bg] = 1
imgs += [img[None] for img in cid]
# albedo
if "albedo" in output_dict:
albedo = transfm(output_dict["albedo"][view_indices].cpu())
albedo = torch.clip(albedo, min=0, max=1)
pred_alpha = transfm(output_dict["pred_alpha"][view_indices].cpu()).expand(-1, 3, -1, -1)
bg = pred_alpha == 0
albedo[bg] = 1
imgs += [img[None] for img in albedo]
# normal
if "normal" in output_dict:
normal = transfm(output_dict["normal"][view_indices].cpu())
normal = torch.clip(normal/2+0.5, min=0, max=1)
imgs += [img[None] for img in normal]
# diffuse
diffuse = None
if self.cfg.render.lighting_type != 'constant' and "diffuse" in output_dict:
diffuse = transfm(output_dict["diffuse"][view_indices].cpu())
diffuse = torch.clip(diffuse, min=0, max=1)
imgs += [img[None] for img in diffuse]
# aa
if "aa" in output_dict:
aa = transfm(output_dict["aa"][view_indices].cpu())
aa = torch.clip(aa, min=0, max=1)
imgs += [img[None] for img in aa]
# alpha
if "gt_alpha" in output_dict:
gt_alpha = transfm(output_dict["gt_alpha"][view_indices].cpu()).expand(-1, 3, -1, -1)
imgs += [img[None] for img in gt_alpha]
if "pred_alpha" in output_dict:
pred_alpha = transfm(output_dict["pred_alpha"][view_indices].cpu()).expand(-1, 3, -1, -1)
color_alpha = torch.tensor([0.2, 0.5, 1])[None, :, None, None]
fg_mask = (pred_alpha > 0).float()
if diffuse is not None:
fg_mask *= diffuse
w = 0.7
overlay_alpha = fg_mask * (w * color_alpha * pred_alpha + (1-w) * gt_rgb) \
+ (1 - fg_mask) * gt_rgb
imgs += [img[None] for img in overlay_alpha]
if "error_alpha" in output_dict:
error_alpha = transfm(output_dict["error_alpha"][view_indices].cpu())
error_alpha = error_alpha.mean(dim=1) / 2 + 0.5
cmap = cm.get_cmap("seismic")
error_alpha = cmap(error_alpha.cpu())
error_alpha = (
torch.from_numpy(error_alpha[..., :3]).to(gt_rgb).permute(0, 3, 1, 2)
)
imgs += [img[None] for img in error_alpha]
else:
error_alpha = None
# landmark
vis_lmk = self.visualize_landmarks(gt_rgb, output_dict, view_indices, disable_jawline_landmarks)
if vis_lmk is not None:
imgs += [img[None] for img in vis_lmk]
# ----------------
num_types = len(imgs) // len(view_indices)
if return_imgs_seperately:
return imgs
else:
if self.cfg.log.stack_views_in_rows:
imgs = [imgs[j * num_views_log + i] for i in range(num_views_log) for j in range(num_types)]
imgs = torch.cat(imgs, dim=0).cpu()
return torchvision.utils.make_grid(imgs, nrow=num_types)
else:
imgs = torch.cat(imgs, dim=0).cpu()
return torchvision.utils.make_grid(imgs, nrow=num_views_log)
@torch.no_grad()
def visualize_landmarks(self, gt_rgb, output_dict, view_indices=torch.tensor([0]), disable_jawline_landmarks=False):
h, w = gt_rgb.shape[-2:]
unit = h / 750
wh = torch.tensor([[[w, h]]])
vis_lmk = None
if "gt_lmk2d" in output_dict:
gt_lmk2d = (output_dict['gt_lmk2d'][view_indices].cpu() * 0.5 + 0.5) * wh
if disable_jawline_landmarks:
gt_lmk2d = gt_lmk2d[:, 17:68]
else:
gt_lmk2d = gt_lmk2d[:, :68]
vis_lmk = gt_rgb.clone() if vis_lmk is None else vis_lmk
for i in range(len(view_indices)):
vis_lmk[i] = plot_landmarks_2d(
vis_lmk[i].clone(),
gt_lmk2d[[i]],
colors="green",
unit=unit,
input_float=True,
).to(vis_lmk[i])
if "pred_lmk2d" in output_dict:
pred_lmk2d = (output_dict['pred_lmk2d'][view_indices].cpu() * 0.5 + 0.5) * wh
if disable_jawline_landmarks:
pred_lmk2d = pred_lmk2d[:, 17:68]
else:
pred_lmk2d = pred_lmk2d[:, :68]
vis_lmk = gt_rgb.clone() if vis_lmk is None else vis_lmk
for i in range(len(view_indices)):
vis_lmk[i] = plot_landmarks_2d(
vis_lmk[i].clone(),
pred_lmk2d[[i]],
colors="red",
unit=unit,
input_float=True,
).to(vis_lmk[i])
return vis_lmk
@torch.no_grad()
def evaluate(self, make_visualization=True, epoch=0):
# always save parameters before evaluation
self.save_result(epoch=epoch)
self.logger.info("Started Evaluation")
# vid_frames = []
photo_loss = []
for frame_idx in range(self.n_timesteps):
sample = self.get_current_frame(frame_idx, include_keyframes=False)
self.clear_cache()
self.fill_cam_params_into_sample(sample)
(
E_total,
log_dict,
verts,
faces,
lmks,
albedos,
output_dict,
) = self.compute_energy(sample, frame_idx)
self.log_scalars(log_dict, frame_idx, session="eval")
photo_loss.append(log_dict["photo"].item())
if make_visualization:
self.log_media(
verts,
faces,
lmks,
albedos,
output_dict,
sample,
frame_idx,
session="eval",
epoch=epoch,
)
self.tb_writer.add_scalar(f"eval_mean/photo", np.mean(photo_loss), epoch)
def prepare_output_path(self, session, frame_idx, folder_name, file_type, stage=None, step=None, epoch=None):
if epoch is not None:
output_folder = self.out_dir / f'{session}_{epoch}' / folder_name
else:
output_folder = self.out_dir / session / folder_name
os.makedirs(output_folder, exist_ok=True)
if stage is not None:
assert step is not None
fname = "frame_{:05d}_{:03d}_{}.{}".format(frame_idx, step, stage, file_type)
else:
fname = "frame_{:05d}.{}".format(frame_idx, file_type)
return output_folder / fname
def save_result(self, fname=None, epoch=None):
"""
Saves tracked/optimized flame parameters.
:return:
"""
# save parameters
keys = [
"rotation",
"translation",
"neck_pose",
"jaw_pose",
"eyes_pose",
"shape",
"expr",
"timestep_id",
"n_processed_frames",
]
values = [
self.rotation,
self.translation,
self.neck_pose,
self.jaw_pose,
self.eyes_pose,
self.shape,
self.expr,
np.array(self.dataset.timestep_ids),
self.frame_idx,
]
if not self.calibrated:
keys += ["focal_length"]
values += [self.focal_length]
if not self.cfg.model.tex_painted:
keys += ["tex"]
values += [self.tex_pca]
if self.cfg.model.tex_extra:
keys += ["tex_extra"]
values += [self.tex_extra]
if self.lights is not None:
keys += ["lights"]
values += [self.lights]
if self.cfg.model.use_static_offset:
keys += ["static_offset"]
values += [self.static_offset]
if self.cfg.model.use_dynamic_offset:
keys += ["dynamic_offset"]
values += [self.dynamic_offset]
export_dict = {}
for k, v in zip(keys, values):
if not isinstance(v, np.ndarray):
if isinstance(v, list):
v = torch.stack(v)
if isinstance(v, torch.Tensor):
v = v.detach().cpu().numpy()
export_dict[k] = v
export_dict["image_size"] = np.array(self.image_size)
fname = fname if fname is not None else "tracked_flame_params"
if epoch is not None:
fname = f"{fname}_{epoch}"
np.savez(self.out_dir / f'{fname}.npz', **export_dict)
class GlobalTracker(FlameTracker):
def __init__(self, cfg: BaseTrackingConfig):
super().__init__(cfg)
self.calibrated = cfg.data.calibrated
# logging
out_dir = cfg.exp.output_folder / datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
out_dir.mkdir(parents=True,exist_ok=True)
self.frame_idx = self.cfg.begin_frame_idx
self.out_dir = out_dir
self.tb_writer = SummaryWriter(self.out_dir)
self.log_interval_scalar = self.cfg.log.interval_scalar
self.log_interval_media = self.cfg.log.interval_media
config_yaml_path = out_dir / 'config.yml'
config_yaml_path.write_text(yaml.dump(cfg), "utf8")
print(tyro.to_yaml(cfg))
self.logger = get_logger(__name__, root=True, log_dir=out_dir)
# data
self.dataset = import_module(cfg.data._target)(
cfg=cfg.data,
img_to_tensor=True,
batchify_all_views=True, # important to optimized all views together
)
# FlameTracker expects all views of a frame in a batch, which is undertaken by the
# dataset. Therefore batching is disabled for the dataloader
self.image_size = self.dataset[0]["rgb"].shape[-2:]
self.n_timesteps = len(self.dataset)
# parameters
self.init_params()
if self.cfg.model.flame_params_path is not None:
self.load_from_tracked_flame_params(self.cfg.model.flame_params_path)
def init_params(self):
train_tensors = []
# flame model params
self.shape = torch.zeros(self.cfg.model.n_shape).to(self.device)
self.expr = torch.zeros(self.n_timesteps, self.cfg.model.n_expr).to(self.device)
# joint axis angles
self.neck_pose = torch.zeros(self.n_timesteps, 3).to(self.device)
self.jaw_pose = torch.zeros(self.n_timesteps, 3).to(self.device)
self.eyes_pose = torch.zeros(self.n_timesteps, 6).to(self.device)
# rigid pose
self.translation = torch.zeros(self.n_timesteps, 3).to(self.device)
self.rotation = torch.zeros(self.n_timesteps, 3).to(self.device)
# texture and lighting params
self.tex_pca = torch.zeros(self.cfg.model.n_tex).to(self.device)
if self.cfg.model.tex_extra:
res = self.cfg.model.tex_resolution
self.tex_extra = torch.zeros(3, res, res).to(self.device)
if self.cfg.render.lighting_type == 'SH':
self.lights_uniform = torch.zeros(9, 3).to(self.device)
self.lights_uniform[0] = torch.tensor([np.sqrt(4 * np.pi)]).expand(3).float().to(self.device)
self.lights = self.lights_uniform.clone()
else:
self.lights = None
train_tensors += (
[self.shape, self.translation, self.rotation, self.neck_pose, self.jaw_pose, self.eyes_pose, self.expr,]
)
if not self.cfg.model.tex_painted:
train_tensors += [self.tex_pca]
if self.cfg.model.tex_extra:
train_tensors += [self.tex_extra]
if self.lights is not None:
train_tensors += [self.lights]
if self.cfg.model.use_static_offset:
self.static_offset = torch.zeros(1, self.flame.v_template.shape[0], 3).to(self.device)
train_tensors += [self.static_offset]
else:
self.static_offset = None
if self.cfg.model.use_dynamic_offset:
self.dynamic_offset = torch.zeros(self.n_timesteps, self.flame.v_template.shape[0], 3).to(self.device)
train_tensors += self.dynamic_offset
else:
self.dynamic_offset = None
# camera definition
if not self.calibrated:
# K contains focal length and principle point
self.focal_length = torch.tensor([1.5]).to(self.device)
self.RT = torch.eye(3, 4).to(self.device)
self.RT[2, 3] = -1 # (0, 0, -1) in w2c corresponds to (0, 0, 1) in c2w
train_tensors += [self.focal_length]
for t in train_tensors:
t.requires_grad = True
def optimize(self):
"""
Optimizes flame parameters on all frames of the dataset with random rampling
:return:
"""
self.global_step = 0
# first initialize frame either from calibration or previous frame
# with torch.no_grad():
# self.initialize_frame(frame_idx)
# sequential optimization of timesteps
self.logger.info(f"Start sequential tracking FLAME in {self.n_timesteps} frames")
dataloader = DataLoader(self.dataset, batch_size=None, shuffle=False, num_workers=0)
for sample in dataloader:
timestep = sample["timestep_index"][0].item()
if timestep == 0:
self.optimize_stage('lmk_init_rigid', sample)
self.optimize_stage('lmk_init_all', sample)
if self.cfg.exp.photometric:
self.optimize_stage('rgb_init_texture', sample)
self.optimize_stage('rgb_init_all', sample)
if self.cfg.model.use_static_offset:
self.optimize_stage('rgb_init_offset', sample)
if self.cfg.exp.photometric:
self.optimize_stage('rgb_sequential_tracking', sample)
else:
self.optimize_stage('lmk_sequential_tracking', sample)
self.initialize_next_timtestep(timestep)
self.evaluate(make_visualization=False, epoch=0)
self.logger.info(f"Start global optimization of all frames")
# global optimization with random sampling
dataloader = DataLoader(self.dataset, batch_size=None, shuffle=True, num_workers=0)
if self.cfg.exp.photometric:
self.optimize_stage(stage='rgb_global_tracking', dataloader=dataloader, lr_scale=0.1)
else:
self.optimize_stage(stage='lmk_global_tracking', dataloader=dataloader, lr_scale=0.1)
self.logger.info("All done.")
def optimize_stage(
self,
stage: Literal['lmk_init_rigid', 'lmk_init_all', 'rgb_init_texture', 'rgb_init_all', 'rgb_init_offset', 'rgb_sequential_tracking', 'rgb_global_tracking'],
sample = None,
dataloader = None,
lr_scale = 1.0,
):
params = self.get_train_parameters(stage)
optimizer = self.configure_optimizer(params, lr_scale=lr_scale)
if sample is not None:
num_steps = self.cfg.pipeline[stage].num_steps
for step_i in range(num_steps):
self.optimize_iter(sample, optimizer, stage)
else:
assert dataloader is not None
num_epochs = self.cfg.pipeline[stage].num_epochs
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
for epoch_i in range(num_epochs):
self.logger.info(f"EPOCH {epoch_i+1} / {num_epochs}")
for step_i, sample in enumerate(dataloader):
self.optimize_iter(sample, optimizer, stage)
scheduler.step()
if (epoch_i + 1) % 10 == 0:
self.evaluate(make_visualization=True, epoch=epoch_i+1)
def optimize_iter(self, sample, optimizer, stage):
# compute loss and update parameters
self.clear_cache()
timestep_index = sample["timestep_index"][0]
self.fill_cam_params_into_sample(sample)
(
E_total,
log_dict,
verts,
faces,
lmks,
albedos,
output_dict,
) = self.compute_energy(
sample, frame_idx=timestep_index, stage=stage,
)
optimizer.zero_grad()
E_total.backward()
optimizer.step()
# log energy terms and visualize
if (self.global_step+1) % self.log_interval_scalar == 0:
self.log_scalars(
log_dict,
timestep_index,
session="train",
stage=stage,
frame_step=self.global_step,
)
if (self.global_step+1) % self.log_interval_media == 0:
self.log_media(
verts,
faces,
lmks,
albedos,
output_dict,
sample,
timestep_index,
session="train",
stage=stage,
frame_step=self.global_step,
)
del verts, faces, lmks, albedos, output_dict
self.global_step += 1
def get_train_parameters(
self, stage: Literal['lmk_init_rigid', 'lmk_init_all', 'rgb_init_all', 'rgb_init_offset', 'rgb_sequential_tracking', 'rgb_global_tracking'],
):
"""
Collects the parameters to be optimized for the current frame
:return: dict of parameters
"""
self.opt_dict = defaultdict(bool) # dict to keep track of which parameters are optimized
for p in self.cfg.pipeline[stage].optimizable_params:
self.opt_dict[p] = True
params = defaultdict(list) # dict to collect parameters to be optimized
# shared properties
if self.opt_dict["cam"] and not self.calibrated:
params["cam"] = [self.focal_length]
if self.opt_dict["shape"]:
params["shape"] = [self.shape]
if self.opt_dict["texture"]:
if not self.cfg.model.tex_painted:
params["tex"] = [self.tex_pca]
if self.cfg.model.tex_extra:
params["tex_extra"] = [self.tex_extra]
if self.opt_dict["static_offset"] and self.cfg.model.use_static_offset:
params["static_offset"] = [self.static_offset]
if self.opt_dict["lights"] and self.lights is not None:
params["lights"] = [self.lights]
# per-frame properties
if self.opt_dict["pose"]:
params["translation"].append(self.translation)
params["rotation"].append(self.rotation)
if self.opt_dict["joints"]:
params["eyes"].append(self.eyes_pose)
params["neck"].append(self.neck_pose)
params["jaw"].append(self.jaw_pose)
if self.opt_dict["expr"]:
params["expr"].append(self.expr)
if self.opt_dict["dynamic_offset"] and self.cfg.model.use_dynamic_offset:
params["dynamic_offset"].append(self.dynamic_offset)
return params
def initialize_next_timtestep(self, timestep):
if timestep < self.n_timesteps - 1:
self.translation[timestep + 1].data.copy_(self.translation[timestep])
self.rotation[timestep + 1].data.copy_(self.rotation[timestep])
self.neck_pose[timestep + 1].data.copy_(self.neck_pose[timestep])
self.jaw_pose[timestep + 1].data.copy_(self.jaw_pose[timestep])
self.eyes_pose[timestep + 1].data.copy_(self.eyes_pose[timestep])
self.expr[timestep + 1].data.copy_(self.expr[timestep])
if self.cfg.model.use_dynamic_offset:
self.dynamic_offset[timestep + 1].data.copy_(self.dynamic_offset[timestep])
|