File size: 26,520 Bytes
17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
#
# Toyota Motor Europe NV/SA and its affiliated companies retain all intellectual
# property and proprietary rights in and to this software and related documentation.
# Any commercial use, reproduction, disclosure or distribution of this software and
# related documentation without an express license agreement from Toyota Motor Europe NV/SA
# is strictly prohibited.
#
import math
from typing import Optional, Literal, Dict, List
from glob import glob
import concurrent.futures
import multiprocessing
from copy import deepcopy
import yaml
import json
import tyro
from pathlib import Path
from tqdm import tqdm
from PIL import Image
import numpy as np
import torch
from torch.utils.data import DataLoader
import torchvision
# from pytorch3d.transforms import axis_angle_to_matrix, matrix_to_axis_angle
from vhap.config.base import DataConfig, ModelConfig, import_module
from vhap.data.nerf_dataset import NeRFDataset
from vhap.model.flame import FlameHead
from vhap.util.mesh import get_obj_content
from vhap.util.render_nvdiffrast import NVDiffRenderer
# to prevent "OSError: [Errno 24] Too many open files"
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
max_threads = min(multiprocessing.cpu_count(), 8)
class NeRFDatasetWriter:
def __init__(self, cfg_data: DataConfig, tgt_folder: Path, subset:Optional[str]=None, scale_factor: Optional[float]=None, background_color: Optional[str]=None):
self.cfg_data = cfg_data
self.tgt_folder = tgt_folder
print("==== Config: data ====")
print(tyro.to_yaml(cfg_data))
cfg_data.target_extrinsic_type = 'c2w'
cfg_data.background_color = 'white'
cfg_data.use_alpha_map = True
dataset = import_module(cfg_data._target)(cfg=cfg_data)
self.dataloader = DataLoader(dataset, shuffle=False, batch_size=None, collate_fn=lambda x: x, num_workers=0)
def write(self):
if not self.tgt_folder.exists():
self.tgt_folder.mkdir(parents=True)
db = {
"frames": [],
}
print(f"Writing images to {self.tgt_folder}")
worker_args = []
timestep_indices = set()
camera_indices = set()
for i, item in tqdm(enumerate(self.dataloader), total=len(self.dataloader)):
# print(item.keys())
timestep_indices.add(item['timestep_index'])
camera_indices.add(item['camera_index'])
extrinsic = item['extrinsic']
transform_matrix = torch.cat([extrinsic, torch.tensor([[0,0,0,1]])], dim=0).numpy()
intrinsic = item['intrinsic'].double().numpy()
cx = intrinsic[0, 2]
cy = intrinsic[1, 2]
fl_x = intrinsic[0, 0]
fl_y = intrinsic[1, 1]
h = item['rgb'].shape[0]
w = item['rgb'].shape[1]
angle_x = math.atan(w / (fl_x * 2)) * 2
angle_y = math.atan(h / (fl_y * 2)) * 2
frame_item = {
"timestep_index": item['timestep_index'],
"timestep_index_original": item['timestep_index_original'],
"timestep_id": item['timestep_id'],
"camera_index": item['camera_index'],
"camera_id": item['camera_id'],
"cx": cx,
"cy": cy,
"fl_x": fl_x,
"fl_y": fl_y,
"h": h,
"w": w,
"camera_angle_x": angle_x,
"camera_angle_y": angle_y,
"transform_matrix": transform_matrix.tolist(),
"file_path": f"images/{item['timestep_index']:05d}_{item['camera_index']:02d}.png",
}
path2data = {
str(self.tgt_folder / frame_item['file_path']): item['rgb'],
}
if 'alpha_map' in item:
frame_item['fg_mask_path'] = f"fg_masks/{item['timestep_index']:05d}_{item['camera_index']:02d}.png"
path2data[str(self.tgt_folder / frame_item['fg_mask_path'])] = item['alpha_map']
db['frames'].append(frame_item)
worker_args.append([path2data])
#--- no threading
# if len(worker_args) > 0:
# write_data(path2data)
#--- threading
if len(worker_args) == max_threads or i == len(self.dataloader)-1:
with concurrent.futures.ThreadPoolExecutor(max_threads) as executor:
futures = [executor.submit(write_data, *args) for args in worker_args]
concurrent.futures.wait(futures)
worker_args = []
# add shared intrinsic parameters to be compatible with other nerf libraries
db.update({
"cx": cx,
"cy": cy,
"fl_x": fl_x,
"fl_y": fl_y,
"h": h,
"w": w,
"camera_angle_x": angle_x,
"camera_angle_y": angle_y
})
# add indices to ease filtering
db['timestep_indices'] = sorted(list(timestep_indices))
db['camera_indices'] = sorted(list(camera_indices))
write_json(db, self.tgt_folder)
write_json(db, self.tgt_folder, division='backup')
class TrackedFLAMEDatasetWriter:
def __init__(self, cfg_model: ModelConfig, src_folder: Path, tgt_folder: Path, mode: Literal['mesh', 'param'], epoch: int = -1):
print("---- Config: model ----")
print(tyro.to_yaml(cfg_model))
self.cfg_model = cfg_model
self.src_folder = src_folder
self.tgt_folder = tgt_folder
self.mode = mode
db_backup_path = tgt_folder / "transforms_backup.json"
assert db_backup_path.exists(), f"Could not find {db_backup_path}"
print(f"Loading database from: {db_backup_path}")
self.db = json.load(open(db_backup_path, "r"))
paths = [Path(p) for p in glob(str(src_folder / "tracked_flame_params*.npz"))]
epochs = [int(p.stem.split('_')[-1]) for p in paths]
if epoch == -1:
index = np.argmax(epochs)
else:
index = epochs.index(epoch)
flame_params_path = paths[index]
assert flame_params_path.exists(), f"Could not find {flame_params_path}"
print(f"Loading FLAME parameters from: {flame_params_path}")
self.flame_params = dict(np.load(flame_params_path))
if "focal_length" in self.flame_params:
self.focal_length = self.flame_params['focal_length'].item()
else:
self.focal_length = None
# Relocate FLAME to the origin and return the transformation matrix to modify camera poses.
self.M = self.relocate_flame_meshes(self.flame_params)
print("Initializing FLAME model...")
self.flame_model = FlameHead(cfg_model.n_shape, cfg_model.n_expr, add_teeth=True)
def relocate_flame_meshes(self, flame_param):
""" Relocate FLAME to the origin and return the transformation matrix to modify camera poses. """
# Rs = torch.tensor(flame_param['rotation'])
Ts = torch.tensor(flame_param['translation'])
# R_mean = axis_angle_to_matrix(Rs.mean(0))
T_mean = Ts.mean(0)
M = torch.eye(4)
# M[:3, :3] = R_mean.transpose(-1, -2)
M[:3, 3] = -T_mean
# flame_param['rotation'] = (matrix_to_axis_angle(M[None, :3, :3] @ axis_angle_to_matrix(Rs))).numpy()
flame_param['translation'] = (M[:3, 3] + Ts).numpy()
return M.numpy()
def replace_cam_params(self, item):
c2w = np.eye(4)
c2w[2, 3] = 1 # place the camera at (0, 0, 1) in the world coordinate by default
item['transform_matrix'] = c2w
h = item['h']
w = item['w']
fl_x = self.focal_length * max(h, w)
fl_y = self.focal_length * max(h, w)
angle_x = math.atan(w / (fl_x * 2)) * 2
angle_y = math.atan(h / (fl_y * 2)) * 2
item.update({
"cx": w / 2,
"cy": h / 2,
"fl_x": fl_x,
"fl_y": fl_y,
"camera_angle_x": angle_x,
"camera_angle_y": angle_y,
"transform_matrix": c2w.tolist(),
})
def write(self):
if self.mode == 'mesh':
self.write_canonical_mesh()
indices = self.db['timestep_indices']
verts = infer_flame_params(self.flame_model, self.flame_params, indices)
print(f"Writing FLAME expressions and meshes to: {self.tgt_folder}")
elif self.mode == 'param':
self.write_canonical_flame_param()
print(f"Writing FLAME parameters to: {self.tgt_folder}")
saved = [False] * len(self.db['timestep_indices']) # avoid writing the same mesh multiple times
num_processes = 0
worker_args = []
for i, frame in tqdm(enumerate(self.db['frames']), total=len(self.db['frames'])):
if self.focal_length is not None:
self.replace_cam_params(frame)
# modify the camera extrinsics to place the tracked FLAME at the origin
frame['transform_matrix'] = (self.M @ np.array(frame['transform_matrix'])).tolist()
ti_orig = frame['timestep_index_original'] # use ti_orig when loading FLAME parameters
ti = frame['timestep_index'] # use ti when saving files
# write FLAME mesh or parameters
if self.mode == 'mesh':
frame['exp_path'] = f"flame/exp/{ti:05d}.txt"
frame['mesh_path'] = f"meshes/{ti:05d}.obj"
if not saved[ti]:
worker_args.append([self.tgt_folder, frame['exp_path'], self.flame_params['expr'][ti_orig], frame['mesh_path'], verts[ti_orig], self.flame_model.faces])
saved[ti] = True
func = self.write_expr_and_mesh
elif self.mode == 'param':
frame['flame_param_path'] = f"flame_param/{ti:05d}.npz"
if not saved[ti]:
worker_args.append([self.tgt_folder, frame['flame_param_path'], self.flame_params, ti_orig])
saved[ti] = True
func = self.write_flame_param
#--- no multiprocessing
if len(worker_args) > 0:
func(*worker_args.pop())
#--- multiprocessing
# if len(worker_args) == num_processes or i == len(self.db['frames'])-1:
# pool = multiprocessing.Pool(processes=num_processes)
# pool.starmap(func, worker_args)
# pool.close()
# pool.join()
# worker_args = []
write_json(self.db, self.tgt_folder)
write_json(self.db, self.tgt_folder, division='backup_flame')
def write_canonical_mesh(self):
print(f"Inferencing FLAME in the canonical space...")
if 'static_offset' in self.flame_params:
static_offset = torch.tensor(self.flame_params['static_offset'])
else:
static_offset = None
with torch.no_grad():
ret = self.flame_model(
torch.tensor(self.flame_params['shape'])[None, ...],
torch.zeros(*self.flame_params['expr'][:1].shape),
torch.zeros(*self.flame_params['rotation'][:1].shape),
torch.zeros(*self.flame_params['neck_pose'][:1].shape),
torch.tensor([[0.3, 0, 0]]),
torch.zeros(*self.flame_params['eyes_pose'][:1].shape),
torch.zeros(*self.flame_params['translation'][:1].shape),
return_verts_cano=False,
static_offset=static_offset,
)
verts = ret[0]
cano_mesh_path = self.tgt_folder / 'canonical.obj'
print(f"Writing canonical mesh to: {cano_mesh_path}")
obj_data = get_obj_content(verts[0], self.flame_model.faces)
write_data({cano_mesh_path: obj_data})
@staticmethod
def write_expr_and_mesh(tgt_folder, exp_path, expr, mesh_path, verts, faces):
path2data = {}
expr_data = '\n'.join([str(n) for n in expr])
path2data[tgt_folder / exp_path] = expr_data
obj_data = get_obj_content(verts, faces)
path2data[tgt_folder / mesh_path] = obj_data
write_data(path2data)
def write_canonical_flame_param(self):
flame_param = {
'translation': np.zeros_like(self.flame_params['translation'][:1]),
'rotation': np.zeros_like(self.flame_params['rotation'][:1]),
'neck_pose': np.zeros_like(self.flame_params['neck_pose'][:1]),
'jaw_pose': np.array([[0.3, 0, 0]]), # open mouth
'eyes_pose': np.zeros_like(self.flame_params['eyes_pose'][:1]),
'shape': self.flame_params['shape'],
'expr': np.zeros_like(self.flame_params['expr'][:1]),
}
if 'static_offset' in self.flame_params:
flame_param['static_offset'] = self.flame_params['static_offset']
cano_flame_param_path = self.tgt_folder / 'canonical_flame_param.npz'
print(f"Writing canonical FLAME parameters to: {cano_flame_param_path}")
write_data({cano_flame_param_path: flame_param})
@staticmethod
def write_flame_param(tgt_folder, flame_param_path, flame_params, tid):
params = {
'translation': flame_params['translation'][[tid]],
'rotation': flame_params['rotation'][[tid]],
'neck_pose': flame_params['neck_pose'][[tid]],
'jaw_pose': flame_params['jaw_pose'][[tid]],
'eyes_pose': flame_params['eyes_pose'][[tid]],
'shape': flame_params['shape'],
'expr': flame_params['expr'][[tid]],
}
if 'static_offset' in flame_params:
params['static_offset'] = flame_params['static_offset']
if 'dynamic_offset' in flame_params:
params['dynamic_offset'] = flame_params['dynamic_offset'][[tid]]
path2data = {tgt_folder / flame_param_path: params}
write_data(path2data)
class MaskFromFLAME:
def __init__(self, cfg_model: ModelConfig, tgt_folder, background_color: str) -> None:
background_color = self.cfg_data.background_color if background_color is None else background_color
if background_color == 'white':
self.background_tensor = torch.tensor([255, 255, 255]).byte()
elif background_color == 'black':
self.background_tensor = torch.tensor([0, 0, 0]).byte()
else:
raise ValueError(f"Unknown background color: {background_color}")
dataset = NeRFDataset(
root_folder=tgt_folder,
division=None,
camera_convention_conversion=None,
target_extrinsic_type='w2c',
use_fg_mask=True,
use_flame_param=True,
)
self.dataloader = DataLoader(dataset, shuffle=False, batch_size=None, collate_fn=None, num_workers=0)
self.flame_model = FlameHead(cfg_model.n_shape, cfg_model.n_expr, add_teeth=True)
self.mesh_renderer = NVDiffRenderer(use_opengl=False)
@torch.no_grad()
def write(self):
t2verts = {}
worker_args = []
print(f"Generating masks from FLAME...")
for i, frame in enumerate(tqdm(self.dataloader)):
# get FLAME vertices
timestep = frame['timestep_index']
if timestep not in t2verts:
t2verts[timestep] = infer_flame_params(self.flame_model, frame['flame_param'], [0]).cuda()
verts = t2verts[timestep]
# render to get forground mask
RT = frame['extrinsics'].cuda()[None]
K = frame['intrinsics'].cuda()[None]
h = frame['image_height']
w = frame['image_width']
# mask = self.get_mask(verts, RT, K, h, w)
mask = self.get_mask_tilted_line(verts, RT, K, h, w)
# edit the image and mask with dilated FLAME mask
img = frame['image'].cuda()
img = img * mask[:, :, None] + self.background_tensor.cuda()[None, None, :] * (1-mask)[:, :, None]
# overwrite the original images
path2data = {
str(frame['image_path']): img.byte().cpu().numpy(),
}
if 'fg_mask_path' in frame and 'fg_mask' in frame:
fg_mask = frame['fg_mask'].cuda()
fg_mask = fg_mask * mask
# overwrite the original masks
path2data.update({
str(frame['fg_mask_path']): fg_mask.byte().cpu().numpy(),
})
# # write to new folder
# path2data.update({
# str(frame['fg_mask_path']).replace('fg_masks', 'fg_masks_'): fg_mask.byte().cpu().numpy(),
# })
write_data(path2data)
worker_args.append([path2data])
#--- no threading
# if len(worker_args) > 0:
# write_data(path2data)
#--- threading
if len(worker_args) == max_threads or i == len(self.dataloader)-1:
with concurrent.futures.ThreadPoolExecutor(max_threads) as executor:
futures = [executor.submit(write_data, *args) for args in worker_args]
concurrent.futures.wait(futures)
worker_args = []
def get_mask(self, verts, RT, K, h, w):
faces = self.flame_model.faces.cuda()
out_dict = self.mesh_renderer.render_without_texture(verts, faces, RT, K, (h, w))
rgba_mesh = out_dict['rgba'].squeeze(0) # (H, W, C)
mask_mesh = rgba_mesh[..., 3] # (H, W)
# get the bottom line of the neck and disable mask for the upper part
verts_clip = out_dict['verts_clip'][0]
verts_ndc = verts_clip[:, :3] / verts_clip[:, -1:]
xy = verts_ndc[:, :2]
xy[:, 1] = -xy[:, 1]
xy = (xy * 0.5 + 0.5) * torch.tensor([[h, w]]).cuda()
vid_ring = self.flame_model.mask.get_vid_by_region(['neck_top'])
xy_ring = xy[vid_ring]
bottom_line = int(xy_ring[:, 1].min().item())
mask = mask_mesh.clone()
mask[:bottom_line] = 1
# anti-aliasing with gaussian kernel
k = int(0.02 * w)//2 * 2 + 1
blur = torchvision.transforms.GaussianBlur(k, sigma=k)
mask = blur(mask[None])[0] #.clamp(0, 1)
return mask
def get_mask_tilted_line(self, verts, RT, K, h, w):
verts_ndc = self.mesh_renderer.world_to_ndc(verts, RT, K, (h, w), flip_y=True)
verts_xy = verts_ndc[0, :, :2]
verts_xy = (verts_xy * 0.5 + 0.5) * torch.tensor([w, h]).cuda()
verts_xy_left = verts_xy[self.flame_model.mask.get_vid_by_region(['neck_right_point'])]
verts_xy_right = verts_xy[self.flame_model.mask.get_vid_by_region(['neck_left_point'])]
verts_xy_bottom = verts_xy[self.flame_model.mask.get_vid_by_region(['front_middle_bottom_point_boundary'])]
delta_xy = verts_xy_left - verts_xy_right
assert (delta_xy[:, 0] != 0).all()
k = delta_xy[:, 1] / delta_xy[:, 0]
b = verts_xy_bottom[:, 1] - k * verts_xy_bottom[:, 0]
x = torch.arange(w).cuda()
y = torch.arange(h).cuda()
yx = torch.stack(torch.meshgrid(y, x, indexing='ij'), dim=-1)
mask = ((k * yx[:, :, 1] + b - yx[:, :, 0]) > 0).float()
# anti-aliasing with gaussian kernel
k = int(0.03 * w)//2 * 2 + 1
blur = torchvision.transforms.GaussianBlur(k, sigma=k)
mask = blur(mask[None])[0] #.clamp(0, 1)
return mask
def infer_flame_params(flame_model: FlameHead, flame_params: Dict, indices:List):
if 'static_offset' in flame_params:
static_offset = flame_params['static_offset']
if isinstance(static_offset, np.ndarray):
static_offset = torch.tensor(static_offset)
else:
static_offset = None
for k in flame_params:
if isinstance(flame_params[k], np.ndarray):
flame_params[k] = torch.tensor(flame_params[k])
with torch.no_grad():
ret = flame_model(
flame_params['shape'][None, ...].expand(len(indices), -1),
flame_params['expr'][indices],
flame_params['rotation'][indices],
flame_params['neck_pose'][indices],
flame_params['jaw_pose'][indices],
flame_params['eyes_pose'][indices],
flame_params['translation'][indices],
return_verts_cano=False,
static_offset=static_offset,
)
verts = ret[0]
return verts
def write_json(db, tgt_folder, division=None):
fname = "transforms.json" if division is None else f"transforms_{division}.json"
json_path = tgt_folder / fname
print(f"Writing database: {json_path}")
with open(json_path, "w") as f:
json.dump(db, f, indent=4)
def write_data(path2data):
for path, data in path2data.items():
path = Path(path)
if not path.parent.exists():
path.parent.mkdir(parents=True, exist_ok=True)
if path.suffix in [".png", ".jpg"]:
Image.fromarray(data).save(path)
elif path.suffix in [".obj"]:
with open(path, "w") as f:
f.write(data)
elif path.suffix in [".txt"]:
with open(path, "w") as f:
f.write(data)
elif path.suffix in [".npz"]:
np.savez(path, **data)
else:
raise NotImplementedError(f"Unknown file type: {path.suffix}")
def split_json(tgt_folder: Path, train_ratio=0.7):
db = json.load(open(tgt_folder / "transforms.json", "r"))
# init db for each division
db_train = {k: v for k, v in db.items() if k not in ['frames', 'timestep_indices', 'camera_indices']}
db_train['frames'] = []
db_val = deepcopy(db_train)
db_test = deepcopy(db_train)
# divide timesteps
nt = len(db['timestep_indices'])
assert 0 < train_ratio <= 1
nt_train = int(np.ceil(nt * train_ratio))
nt_test = nt - nt_train
# record number of timesteps
timestep_indices = sorted(db['timestep_indices'])
db_train['timestep_indices'] = timestep_indices[:nt_train]
db_val['timestep_indices'] = timestep_indices[:nt_train] # validation set share the same timesteps with training set
db_test['timestep_indices'] = timestep_indices[nt_train:]
if len(db['camera_indices']) > 1:
# when having multiple cameras, leave one camera for validation (novel-view sythesis)
if 8 in db['camera_indices']:
# use camera 8 for validation (front-view of the NeRSemble dataset)
db_train['camera_indices'] = [i for i in db['camera_indices'] if i != 8]
db_val['camera_indices'] = [8]
db_test['camera_indices'] = db['camera_indices']
else:
# use the last camera for validation
db_train['camera_indices'] = db['camera_indices'][:-1]
db_val['camera_indices'] = [db['camera_indices'][-1]]
db_test['camera_indices'] = db['camera_indices']
else:
# when only having one camera, we create an empty validation set
db_train['camera_indices'] = db['camera_indices']
db_val['camera_indices'] = []
db_test['camera_indices'] = db['camera_indices']
# fill data by timestep index
range_train = range(db_train['timestep_indices'][0], db_train['timestep_indices'][-1]+1) if nt_train > 0 else []
range_test = range(db_test['timestep_indices'][0], db_test['timestep_indices'][-1]+1) if nt_test > 0 else []
for f in db['frames']:
if f['timestep_index'] in range_train:
if f['camera_index'] in db_train['camera_indices']:
db_train['frames'].append(f)
elif f['camera_index'] in db_val['camera_indices']:
db_val['frames'].append(f)
else:
raise ValueError(f"Unknown camera index: {f['camera_index']}")
elif f['timestep_index'] in range_test:
db_test['frames'].append(f)
assert f['camera_index'] in db_test['camera_indices'], f"Unknown camera index: {f['camera_index']}"
else:
raise ValueError(f"Unknown timestep index: {f['timestep_index']}")
write_json(db_train, tgt_folder, division='train')
write_json(db_val, tgt_folder, division='val')
write_json(db_test, tgt_folder, division='test')
def load_config(src_folder: Path):
config_path = src_folder / "config.yml"
if not config_path.exists():
src_folder = sorted(src_folder.iterdir())[-1]
config_path = src_folder / "config.yml"
assert config_path.exists(), f"File not found: {config_path}"
cfg = yaml.load(config_path.read_text(), Loader=yaml.Loader)
# assert isinstance(cfg, BaseTrackingConfig)
return src_folder, cfg
def check_epoch(src_folder: Path, epoch: int):
paths = [Path(p) for p in glob(str(src_folder / "tracked_flame_params*.npz"))]
epochs = [int(p.stem.split('_')[-1]) for p in paths]
if epoch == -1:
index = np.argmax(epochs)
else:
try:
index = epochs.index(epoch)
except ValueError:
raise ValueError(f"Could not find epoch {epoch} in {src_folder}")
def main(
src_folder: Path,
tgt_folder: Path,
subset: Optional[str]=None,
scale_factor: Optional[float]=None,
background_color: Optional[str]=None,
flame_mode: Literal['mesh', 'param']='param',
create_mask_from_mesh: bool=False,
epoch: int=-1,
):
print(f"Begin exportation from {src_folder}")
assert src_folder.exists(), f"Folder not found: {src_folder}"
src_folder, cfg = load_config(src_folder)
check_epoch(src_folder, epoch)
if epoch != -1:
tgt_folder = Path(str(tgt_folder) + f"_epoch{epoch}")
nerf_dataset_writer = NeRFDatasetWriter(cfg.data, tgt_folder, subset, scale_factor, background_color)
nerf_dataset_writer.write()
flame_dataset_writer = TrackedFLAMEDatasetWriter(cfg.model, src_folder, tgt_folder, mode=flame_mode, epoch=epoch)
flame_dataset_writer.write()
if create_mask_from_mesh:
mask_generator = MaskFromFLAME(cfg.model, tgt_folder, background_color)
mask_generator.write()
split_json(tgt_folder)
print("Finshed!")
if __name__ == "__main__":
tyro.cli(main) |