File size: 13,859 Bytes
17cd746 23ea56e 17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import argparse
import json
import os
import time
from pathlib import Path
import cv2
import numpy as np
import torch
import torchvision
import tyro
import yaml
from loguru import logger
from PIL import Image
from external.human_matting import StyleMatteEngine as HumanMattingEngine
from external.landmark_detection.FaceBoxesV2.faceboxes_detector import \
FaceBoxesDetector
from external.landmark_detection.infer_image import Alignment
from external.vgghead_detector import VGGHeadDetector
from vhap.config.base import BaseTrackingConfig
from vhap.export_as_nerf_dataset import (NeRFDatasetWriter,
TrackedFLAMEDatasetWriter, split_json)
from vhap.model.tracker import GlobalTracker
# Define error codes for various processing failures.
ERROR_CODE = {'FailedToDetect': 1, 'FailedToOptimize': 2, 'FailedToExport': 3}
def expand_bbox(bbox, scale=1.1):
"""Expands the bounding box by a given scale."""
xmin, ymin, xmax, ymax = bbox.unbind(dim=-1)
center_x, center_y = (xmin + xmax) / 2, (ymin + ymax) / 2
extension_size = torch.sqrt((ymax - ymin) * (xmax - xmin)) * scale
x_min_expanded = center_x - extension_size / 2
x_max_expanded = center_x + extension_size / 2
y_min_expanded = center_y - extension_size / 2
y_max_expanded = center_y + extension_size / 2
return torch.stack(
[x_min_expanded, y_min_expanded, x_max_expanded, y_max_expanded],
dim=-1)
def load_config(src_folder: Path):
"""Load configuration from the given source folder."""
config_file_path = src_folder / 'config.yml'
if not config_file_path.exists():
src_folder = sorted(
src_folder.iterdir())[-1] # Get the last modified folder
config_file_path = src_folder / 'config.yml'
assert config_file_path.exists(), f'File not found: {config_file_path}'
config_data = yaml.load(config_file_path.read_text(), Loader=yaml.Loader)
return src_folder, config_data
class FlameTrackingSingleImage:
"""Class for tracking and processing a single image."""
def __init__(
self,
output_dir,
alignment_model_path='./pretrain_model/68_keypoints_model.pkl',
vgghead_model_path='./pretrain_model/vgghead/vgg_heads_l.trcd',
human_matting_path='./pretrain_model/matting/stylematte_synth.pt',
facebox_model_path='./pretrain_model/FaceBoxesV2.pth',
detect_iris_landmarks=False):
logger.info(f'Output Directory: {output_dir}')
start_time = time.time()
logger.info('Loading Pre-trained Models...')
self.output_dir = output_dir
self.output_preprocess = os.path.join(output_dir, 'preprocess')
self.output_tracking = os.path.join(output_dir, 'tracking')
self.output_export = os.path.join(output_dir, 'export')
self.device = 'cuda:0'
# Load alignment model
assert os.path.exists(
alignment_model_path), f'{alignment_model_path} does not exist!'
args = self._parse_args()
args.model_path = alignment_model_path
self.alignment = Alignment(args,
alignment_model_path,
dl_framework='pytorch',
device_ids=[0])
# Load VGG head model
assert os.path.exists(
vgghead_model_path), f'{vgghead_model_path} does not exist!'
self.vgghead_encoder = VGGHeadDetector(
device=self.device, vggheadmodel_path=vgghead_model_path)
# Load human matting model
assert os.path.exists(
human_matting_path), f'{human_matting_path} does not exist!'
self.matting_engine = HumanMattingEngine(
device=self.device, human_matting_path=human_matting_path)
# Load face box detector model
assert os.path.exists(
facebox_model_path), f'{facebox_model_path} does not exist!'
self.detector = FaceBoxesDetector('FaceBoxes', facebox_model_path,
True, self.device)
self.detect_iris_landmarks_flag = detect_iris_landmarks
if self.detect_iris_landmarks_flag:
from fdlite import FaceDetection, FaceLandmark, IrisLandmark
self.iris_detect_faces = FaceDetection()
self.iris_detect_face_landmarks = FaceLandmark()
self.iris_detect_iris_landmarks = IrisLandmark()
end_time = time.time()
torch.cuda.empty_cache()
logger.info(f'Finished Loading Pre-trained Models. Time: '
f'{end_time - start_time:.2f}s')
def _parse_args(self):
parser = argparse.ArgumentParser(description='Evaluation script')
parser.add_argument('--output_dir',
type=str,
help='Output directory',
default='output')
parser.add_argument('--config_name',
type=str,
help='Configuration name',
default='alignment')
return parser.parse_args()
def preprocess(self, input_image_path):
"""Preprocess the input image for tracking."""
if not os.path.exists(input_image_path):
logger.warning(f'{input_image_path} does not exist!')
return ERROR_CODE['FailedToDetect']
start_time = time.time()
logger.info('Starting Preprocessing...')
name_list = []
frame_index = 0
# Bounding box detection
# frame = torchvision.io.read_image(input_image_path)
frame = cv2.imread(input_image_path)[:, :, ::-1].copy()
frame = torch.Tensor(frame).permute(2, 0, 1).contiguous()[:3, ...]
try:
_, frame_bbox, _ = self.vgghead_encoder(frame, frame_index)
except Exception:
logger.error('Failed to detect face')
return ERROR_CODE['FailedToDetect']
if frame_bbox is None:
logger.error('Failed to detect face')
return ERROR_CODE['FailedToDetect']
# Expand bounding box
name_list.append('00000.png')
frame_bbox = expand_bbox(frame_bbox, scale=1.65).long()
# Crop and resize
cropped_frame = torchvision.transforms.functional.crop(
frame,
top=frame_bbox[1],
left=frame_bbox[0],
height=frame_bbox[3] - frame_bbox[1],
width=frame_bbox[2] - frame_bbox[0])
cropped_frame = torchvision.transforms.functional.resize(
cropped_frame, (1024, 1024), antialias=True)
# Apply matting
cropped_frame, mask = self.matting_engine(cropped_frame / 255.0,
return_type='matting',
background_rgb=1.0)
cropped_frame = cropped_frame.cpu() * 255.0
saved_image = np.round(cropped_frame.cpu().permute(
1, 2, 0).numpy()).astype(np.uint8)[:, :, (2, 1, 0)]
# Create output directories if not exist
self.sub_output_dir = os.path.join(
self.output_preprocess,
os.path.splitext(os.path.basename(input_image_path))[0])
output_image_dir = os.path.join(self.sub_output_dir, 'images')
output_mask_dir = os.path.join(self.sub_output_dir, 'mask')
output_alpha_map_dir = os.path.join(self.sub_output_dir, 'alpha_maps')
os.makedirs(output_image_dir, exist_ok=True)
os.makedirs(output_mask_dir, exist_ok=True)
os.makedirs(output_alpha_map_dir, exist_ok=True)
# Save processed image, mask and alpha map
cv2.imwrite(os.path.join(output_image_dir, name_list[frame_index]),
saved_image)
cv2.imwrite(os.path.join(output_mask_dir, name_list[frame_index]),
np.array((mask.cpu() * 255.0)).astype(np.uint8))
cv2.imwrite(
os.path.join(output_alpha_map_dir,
name_list[frame_index]).replace('.png', '.jpg'),
(np.ones_like(saved_image) * 255).astype(np.uint8))
# Landmark detection
detections, _ = self.detector.detect(saved_image, 0.8, 1)
for idx, detection in enumerate(detections):
x1_ori, y1_ori = detection[2], detection[3]
x2_ori, y2_ori = x1_ori + detection[4], y1_ori + detection[5]
scale = max(x2_ori - x1_ori, y2_ori - y1_ori) / 180
center_w, center_h = (x1_ori + x2_ori) / 2, (y1_ori + y2_ori) / 2
scale, center_w, center_h = float(scale), float(center_w), float(
center_h)
face_landmarks = self.alignment.analyze(saved_image, scale,
center_w, center_h)
# Normalize and save landmarks
normalized_landmarks = np.zeros((face_landmarks.shape[0], 3))
normalized_landmarks[:, :2] = face_landmarks / 1024
landmark_output_dir = os.path.join(self.sub_output_dir, 'landmark2d')
os.makedirs(landmark_output_dir, exist_ok=True)
landmark_data = {
'bounding_box': [],
'face_landmark_2d': normalized_landmarks[None, ...],
}
landmark_path = os.path.join(landmark_output_dir, 'landmarks.npz')
np.savez(landmark_path, **landmark_data)
if self.detect_iris_landmarks_flag:
self._detect_iris_landmarks(
os.path.join(output_image_dir, name_list[frame_index]))
end_time = time.time()
torch.cuda.empty_cache()
logger.info(
f'Finished Processing Image. Time: {end_time - start_time:.2f}s')
return 0
def optimize(self):
"""Optimize the tracking model using configuration data."""
start_time = time.time()
logger.info('Starting Optimization...')
tyro.extras.set_accent_color('bright_yellow')
config_data = tyro.cli(BaseTrackingConfig)
config_data.data.sequence = self.sub_output_dir.split('/')[-1]
config_data.data.root_folder = Path(
os.path.dirname(self.sub_output_dir))
if not os.path.exists(self.sub_output_dir):
logger.error(f'Failed to load {self.sub_output_dir}')
return ERROR_CODE['FailedToOptimize']
config_data.exp.output_folder = Path(self.output_tracking)
tracker = GlobalTracker(config_data)
tracker.optimize()
end_time = time.time()
torch.cuda.empty_cache()
logger.info(
f'Finished Optimization. Time: {end_time - start_time:.2f}s')
return 0
def _detect_iris_landmarks(self, image_path):
"""Detect iris landmarks in the given image."""
from fdlite import face_detection_to_roi, iris_roi_from_face_landmarks
img = Image.open(image_path)
img_size = (1024, 1024)
face_detections = self.iris_detect_faces(img)
if len(face_detections) != 1:
logger.warning('Empty iris landmarks')
else:
face_detection = face_detections[0]
try:
face_roi = face_detection_to_roi(face_detection, img_size)
except ValueError:
logger.warning('Empty iris landmarks')
return
face_landmarks = self.iris_detect_face_landmarks(img, face_roi)
if len(face_landmarks) == 0:
logger.warning('Empty iris landmarks')
return
iris_rois = iris_roi_from_face_landmarks(face_landmarks, img_size)
if len(iris_rois) != 2:
logger.warning('Empty iris landmarks')
return
landmarks = []
for iris_roi in iris_rois[::-1]:
try:
iris_landmarks = self.iris_detect_iris_landmarks(
img, iris_roi).iris[0:1]
except np.linalg.LinAlgError:
logger.warning('Failed to get iris landmarks')
break
# For each landmark, append x and y coordinates scaled to 1024.
for landmark in iris_landmarks:
landmarks.append(landmark.x * 1024)
landmarks.append(landmark.y * 1024)
landmark_data = {'00000.png': landmarks}
json.dump(
landmark_data,
open(
os.path.join(self.sub_output_dir, 'landmark2d',
'iris.json'), 'w'))
def export(self):
"""Export the tracking results to configured folder."""
logger.info(f'Beginning export from {self.output_tracking}')
start_time = time.time()
if not os.path.exists(self.output_tracking):
logger.error(f'Failed to load {self.output_tracking}')
return ERROR_CODE['FailedToExport'], 'Failed'
src_folder = Path(self.output_tracking)
tgt_folder = Path(self.output_export,
self.sub_output_dir.split('/')[-1])
src_folder, config_data = load_config(src_folder)
nerf_writer = NeRFDatasetWriter(config_data.data, tgt_folder, None,
None, 'white')
nerf_writer.write()
flame_writer = TrackedFLAMEDatasetWriter(config_data.model,
src_folder,
tgt_folder,
mode='param',
epoch=-1)
flame_writer.write()
split_json(tgt_folder)
end_time = time.time()
torch.cuda.empty_cache()
logger.info(f'Finished Export. Time: {end_time - start_time:.2f}s')
return 0, str(tgt_folder)
|