File size: 17,038 Bytes
17cd746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
from functools import partial
import torch
import torch.nn as nn
from typing import Any, Dict, Optional, Tuple, Union

import torch.nn.functional as F
assert hasattr(F, "scaled_dot_product_attention")
from diffusers.models.attention import Attention, FeedForward
from diffusers.models.attention_processor import CogVideoXAttnProcessor2_0, JointAttnProcessor2_0



class CogVideoXBlock(nn.Module):
    r"""
    Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model.

    Parameters:
        dim (`int`):
            The number of channels in the input and output.
        num_attention_heads (`int`):
            The number of heads to use for multi-head attention.
        attention_head_dim (`int`):
            The number of channels in each head.
        time_embed_dim (`int`):
            The number of channels in timestep embedding.
        dropout (`float`, defaults to `0.0`):
            The dropout probability to use.
        activation_fn (`str`, defaults to `"gelu-approximate"`):
            Activation function to be used in feed-forward.
        attention_bias (`bool`, defaults to `False`):
            Whether or not to use bias in attention projection layers.
        qk_norm (`bool`, defaults to `True`):
            Whether or not to use normalization after query and key projections in Attention.
        norm_elementwise_affine (`bool`, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_eps (`float`, defaults to `1e-5`):
            Epsilon value for normalization layers.
        final_dropout (`bool` defaults to `False`):
            Whether to apply a final dropout after the last feed-forward layer.
        ff_inner_dim (`int`, *optional*, defaults to `None`):
            Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
        ff_bias (`bool`, defaults to `True`):
            Whether or not to use bias in Feed-forward layer.
        attention_out_bias (`bool`, defaults to `True`):
            Whether or not to use bias in Attention output projection layer.
    """

    def __init__(
        self,
        dim: int,
        num_heads: int,
        # num_attention_heads: int,
        # attention_head_dim: int,
        # time_embed_dim: int,
        dropout: float = 0.0,
        activation_fn: str = "gelu-approximate",
        attention_bias: bool = False,
        qk_norm: bool = True,
        norm_elementwise_affine: bool = True,
        eps: float = 1e-5,
        # norm_eps: float = 1e-5,
        final_dropout: bool = True,
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = True,
        attention_out_bias: bool = True,
    ):
        super().__init__()
        norm_eps = eps
        num_attention_heads = num_heads
        attention_head_dim = dim // num_attention_heads
        assert attention_head_dim * num_attention_heads == dim
        
        # 1. Self Attention
        self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps, bias=True)
        self.norm1_context = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps, bias=True)

        self.attn1 = Attention(
            query_dim=dim,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            qk_norm="layer_norm" if qk_norm else None,
            eps=1e-6,
            bias=attention_bias,
            out_bias=attention_out_bias,
            processor=CogVideoXAttnProcessor2_0(),
        )

        # 2. Feed Forward
        self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps, bias=True)
        self.norm2_context = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps, bias=True)

        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
            inner_dim=ff_inner_dim,
            bias=ff_bias,
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        temb: torch.Tensor = None,
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
    ) -> torch.Tensor:
        text_seq_length = encoder_hidden_states.size(1)

        # norm & modulate
        # norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
        #     hidden_states, encoder_hidden_states, temb
        # )
        norm_hidden_states = self.norm1(hidden_states)
        norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states)
        

        # attention
        attn_hidden_states, attn_encoder_hidden_states = self.attn1(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            image_rotary_emb=image_rotary_emb,
        )

        hidden_states = hidden_states +  attn_hidden_states
        encoder_hidden_states = encoder_hidden_states +  attn_encoder_hidden_states

        # norm & modulate
        # norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
        #     hidden_states, encoder_hidden_states, temb
        # )
        norm_hidden_states = self.norm2(hidden_states)
        norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)      
  

        # feed-forward
        norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
        ff_output = self.ff(norm_hidden_states)

        hidden_states = hidden_states + ff_output[:, text_seq_length:]
        encoder_hidden_states = encoder_hidden_states + ff_output[:, :text_seq_length]

        return hidden_states, encoder_hidden_states
    

def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
    # "feed_forward_chunk_size" can be used to save memory
    if hidden_states.shape[chunk_dim] % chunk_size != 0:
        raise ValueError(
            f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
        )

    num_chunks = hidden_states.shape[chunk_dim] // chunk_size
    ff_output = torch.cat(
        [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
        dim=chunk_dim,
    )
    return ff_output


class QKNormJointAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        residual = hidden_states

        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
        context_input_ndim = encoder_hidden_states.ndim
        if context_input_ndim == 4:
            batch_size, channel, height, width = encoder_hidden_states.shape
            encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size = encoder_hidden_states.shape[0]

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        # `context` projections.
        encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

        # attention
        query = torch.cat([query, encoder_hidden_states_query_proj], dim=1)
        key = torch.cat([key, encoder_hidden_states_key_proj], dim=1)
        value = torch.cat([value, encoder_hidden_states_value_proj], dim=1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)
            
        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # Split the attention outputs.
        hidden_states, encoder_hidden_states = (
            hidden_states[:, : residual.shape[1]],
            hidden_states[:, residual.shape[1] :],
        )

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
        if not attn.context_pre_only:
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
        if context_input_ndim == 4:
            encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        return hidden_states, encoder_hidden_states
    

class SD3JointTransformerBlock(nn.Module):
    r"""
    A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.

    Reference: https://arxiv.org/abs/2403.03206

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
            processing of `context` conditions.
    """

    def __init__(
        self,
        dim: int,
        num_heads: int,
        eps: float,
        # num_attention_heads: int,
        # attention_head_dim: int,
        context_pre_only: bool = False,
        qk_norm: Optional[str] = None,
        use_dual_attention: bool = False,
    ):
        super().__init__()
        num_attention_heads = num_heads
        attention_head_dim = dim // num_attention_heads
        assert attention_head_dim * num_attention_heads == dim
        
        self.use_dual_attention = use_dual_attention
        self.context_pre_only = context_pre_only
        # context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"

        # if use_dual_attention:
        #     self.norm1 = SD35AdaLayerNormZeroX(dim)
        # else:
        #     self.norm1 = AdaLayerNormZero(dim)

        self.norm1 = nn.LayerNorm(dim)
            
        # if context_norm_type == "ada_norm_continous":
        #     self.norm1_context = AdaLayerNormContinuous(
        #         dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
        #     )
        # elif context_norm_type == "ada_norm_zero":
        #     self.norm1_context = AdaLayerNormZero(dim)
        # else:
        #     raise ValueError(
        #         f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
        #     )
        #     self.norm1_context = AdaLayerNormZero(dim)

        self.norm1_context = nn.LayerNorm(dim)

        processor = JointAttnProcessor2_0()

        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            added_kv_proj_dim=dim,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            context_pre_only=context_pre_only,
            bias=True,
            processor=processor,
            qk_norm=qk_norm,
            eps=eps,
        )

        if use_dual_attention:
            self.attn2 = Attention(
                query_dim=dim,
                cross_attention_dim=None,
                dim_head=attention_head_dim,
                heads=num_attention_heads,
                out_dim=dim,
                bias=True,
                processor=processor,
                qk_norm=qk_norm,
                eps=eps,
            )
        else:
            self.attn2 = None

        self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
        self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")

        if not context_pre_only:
            self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
            self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
        else:
            self.norm2_context = None
            self.ff_context = None

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    # Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

    def forward(
        self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor=None
    ):
        # if self.use_dual_attention:
        #     norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1(
        #         hidden_states, emb=temb
        #     )
        # else:
        #     norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)

        # if self.context_pre_only:
        #     norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
        # else:
        #     norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
        #         encoder_hidden_states, emb=temb
        #     )
        norm_hidden_states = self.norm1(hidden_states)
        norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states)
        
        # Attention.
        attn_output, context_attn_output = self.attn(
            hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states
        )

        # Process attention outputs for the `hidden_states`.
        # attn_output = gate_msa.unsqueeze(1) * attn_output
        hidden_states = hidden_states + attn_output

        if self.use_dual_attention:
            attn_output2 = self.attn2(hidden_states=norm_hidden_states)
            # attn_output2 = gate_msa2.unsqueeze(1) * attn_output2
            hidden_states = hidden_states + attn_output2

        norm_hidden_states = self.norm2(hidden_states)
        # norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
        else:
            ff_output = self.ff(norm_hidden_states)
        # ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = hidden_states + ff_output

        # Process attention outputs for the `encoder_hidden_states`.
        if self.context_pre_only:
            encoder_hidden_states = None
        else:
            # context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
            encoder_hidden_states = encoder_hidden_states + context_attn_output

            norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
            # norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
            if self._chunk_size is not None:
                # "feed_forward_chunk_size" can be used to save memory
                context_ff_output = _chunked_feed_forward(
                    self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
                )
            else:
                context_ff_output = self.ff_context(norm_encoder_hidden_states)
            # encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
            encoder_hidden_states = encoder_hidden_states +  context_ff_output

        return hidden_states, encoder_hidden_states