File size: 7,810 Bytes
17cd746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# 
# Toyota Motor Europe NV/SA and its affiliated companies retain all intellectual 
# property and proprietary rights in and to this software and related documentation. 
# Any commercial use, reproduction, disclosure or distribution of this software and 
# related documentation without an express license agreement from Toyota Motor Europe NV/SA 
# is strictly prohibited.
#


from typing import Tuple, Literal
import torch
import torch.nn.functional as F
import math
import numpy as np
from scipy.spatial.transform import Rotation


def align_cameras_to_axes(
    R: torch.Tensor,
    T: torch.Tensor,
    target_convention: Literal["opengl", "opencv"] = None,
):
    """align the averaged axes of cameras with the world axes.

    Args:
        R: rotation matrix (N, 3, 3)
        T: translation vector (N, 3)
    """
    # The column vectors of R are the basis vectors of each camera.
    # We construct new bases by taking the mean directions of axes, then use Gram-Schmidt
    # process to make them orthonormal
    bases_c2w = gram_schmidt_orthogonalization(R.mean(0))
    if target_convention == "opengl":
        bases_c2w[:, [1, 2]] *= -1  # flip y and z axes
    elif target_convention == "opencv":
        pass
    bases_w2c = bases_c2w.t()

    # convert the camera poses into the new coordinate system
    R = bases_w2c[None, ...] @ R
    T = bases_w2c[None, ...] @ T
    return R, T


def convert_camera_convention(camera_convention_conversion: str, R: torch.Tensor, K: torch.Tensor, H: int, W: int):
    if camera_convention_conversion is not None:
        if camera_convention_conversion == "opencv->opengl":
            R[:, :3, [1, 2]] *= -1
            # flip y of the principal point
            K[..., 1, 2] = H - K[..., 1, 2]
        elif camera_convention_conversion == "opencv->pytorch3d":
            R[:, :3, [0, 1]] *= -1
            # flip x and y of the principal point
            K[..., 0, 2] = W - K[..., 0, 2]
            K[..., 1, 2] = H - K[..., 1, 2]
        elif camera_convention_conversion == "opengl->pytorch3d":
            R[:, :3, [0, 2]] *= -1
            # flip x of the principal point
            K[..., 0, 2] = W - K[..., 0, 2]
        else:
            raise ValueError(
                f"Unknown camera coordinate conversion: {camera_convention_conversion}."
            )
    return R, K


def gram_schmidt_orthogonalization(M: torch.tensor):
    """conducting Gram-Schmidt process to transform column vectors into orthogonal bases

    Args:
        M: An matrix (num_rows, num_cols)
    Return:
        M: An matrix with orthonormal column vectors (num_rows, num_cols)
    """
    num_rows, num_cols = M.shape
    for c in range(1, num_cols):
        M[:, [c - 1, c]] = F.normalize(M[:, [c - 1, c]], p=2, dim=0)
        M[:, [c]] -= M[:, :c] @ (M[:, :c].T @ M[:, [c]])

    M[:, -1] = F.normalize(M[:, -1], p=2, dim=0)
    return M


def projection_from_intrinsics(K: np.ndarray, image_size: Tuple[int], near: float=0.01, far:float=10, flip_y: bool=False, z_sign=-1):
    """
    Transform points from camera space (x: right, y: up, z: out) to clip space (x: right, y: down, z: in)
    Args:
        K: Intrinsic matrix, (N, 3, 3)
            K = [[
                        [fx, 0, cx],
                        [0, fy, cy],
                        [0,  0,  1],
                ]
            ]
        image_size: (height, width)
    Output:
        proj = [[
                [2*fx/w, 0.0,     (w - 2*cx)/w,             0.0                     ],
                [0.0,    2*fy/h, (h - 2*cy)/h,             0.0                     ],
                [0.0,    0.0,     z_sign*(far+near) / (far-near), -2*far*near / (far-near)],
                [0.0,    0.0,     z_sign,                     0.0                     ]
            ]
        ]
    """

    B = K.shape[0]
    h, w = image_size

    if K.shape[-2:] == (3, 3):
        fx = K[..., 0, 0]
        fy = K[..., 1, 1]
        cx = K[..., 0, 2]
        cy = K[..., 1, 2]
    elif K.shape[-1] == 4:
        # fx, fy, cx, cy = K[..., [0, 1, 2, 3]].split(1, dim=-1)
        fx = K[..., [0]]
        fy = K[..., [1]]
        cx = K[..., [2]]
        cy = K[..., [3]]
    else:
        raise ValueError(f"Expected K to be (N, 3, 3) or (N, 4) but got: {K.shape}")

    proj = np.zeros([B, 4, 4])
    proj[:, 0, 0]  = fx * 2 / w 
    proj[:, 1, 1]  = fy * 2 / h
    proj[:, 0, 2]  = (w - 2 * cx) / w
    proj[:, 1, 2]  = (h - 2 * cy) / h
    proj[:, 2, 2]  = z_sign * (far+near) / (far-near)
    proj[:, 2, 3]  = -2*far*near / (far-near)
    proj[:, 3, 2]  = z_sign

    if flip_y:
        proj[:, 1, 1] *= -1
    return proj


class OrbitCamera:
    def __init__(self, W, H, r=2, fovy=60, znear=1e-8, zfar=10, convention: Literal["opengl", "opencv"]="opengl"):
        self.image_width = W
        self.image_height = H
        self.radius_default = r
        self.fovy_default = fovy
        self.znear = znear
        self.zfar = zfar
        self.convention = convention

        self.up = np.array([0, 1, 0], dtype=np.float32)
        self.reset()
    
    def reset(self):
        """ The internal state of the camera is based on the OpenGL convention, but 
            properties are converted to the target convention when queried.
        """
        self.rot = Rotation.from_matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])  # OpenGL convention
        self.look_at = np.array([0, 0, 0], dtype=np.float32)  # look at this point
        self.radius = self.radius_default  # camera distance from center
        self.fovy = self.fovy_default
        if self.convention == "opencv":
            self.z_sign = 1
            self.y_sign = 1
        elif self.convention == "opengl":
            self.z_sign = -1
            self.y_sign = -1
        else:
            raise ValueError(f"Unknown convention: {self.convention}")

    @property
    def fovx(self):
        return self.fovy / self.image_height * self.image_width
    
    @property
    def intrinsics(self):
        focal = self.image_height / (2 * np.tan(np.radians(self.fovy) / 2))
        return np.array([focal, focal, self.image_width // 2, self.image_height // 2])
    
    @property
    def projection_matrix(self):
        return projection_from_intrinsics(self.intrinsics[None], (self.image_height, self.image_width), self.znear, self.zfar, z_sign=self.z_sign)[0]
    
    @property
    def world_view_transform(self):
        return np.linalg.inv(self.pose)  # world2cam

    @property
    def full_proj_transform(self):
        return self.projection_matrix @ self.world_view_transform

    @property
    def pose(self):
        # first move camera to radius
        pose = np.eye(4, dtype=np.float32)
        pose[2, 3] += self.radius

        # rotate
        rot = np.eye(4, dtype=np.float32)
        rot[:3, :3] = self.rot.as_matrix()
        pose = rot @ pose

        # translate
        pose[:3, 3] -= self.look_at

        if self.convention == "opencv":
            pose[:, [1, 2]] *= -1
        elif self.convention == "opengl":
            pass
        else:
            raise ValueError(f"Unknown convention: {self.convention}")
        return pose

    def orbit(self, dx, dy):
        # rotate along camera up/side axis!
        side = self.rot.as_matrix()[:3, 0]
        rotvec_x = self.up * np.radians(-0.3 * dx)
        rotvec_y = side * np.radians(-0.3 * dy)
        self.rot = Rotation.from_rotvec(rotvec_x) * Rotation.from_rotvec(rotvec_y) * self.rot

    def scale(self, delta):
        self.radius *= 1.1 ** (-delta)

    def pan(self, dx, dy, dz=0):
        # pan in camera coordinate system (careful on the sensitivity!)
        d = np.array([dx, -dy, dz])  # the y axis is flipped
        self.look_at += 2 * self.rot.as_matrix()[:3, :3] @ d * self.radius / self.image_height * math.tan(np.radians(self.fovy) / 2)