Spaces:
Running
on
Zero
Running
on
Zero
File size: 40,579 Bytes
17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 |
import os
from dataclasses import dataclass, field
from collections import defaultdict
try:
from diff_gaussian_rasterization_wda import GaussianRasterizationSettings, GaussianRasterizer
except:
from diff_gaussian_rasterization import GaussianRasterizationSettings, GaussianRasterizer
from plyfile import PlyData, PlyElement
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
import copy
from diffusers.utils import is_torch_version
from lam.models.rendering.flame_model.flame import FlameHeadSubdivided
from lam.models.transformer import TransformerDecoder
from pytorch3d.transforms import matrix_to_quaternion
from lam.models.rendering.utils.typing import *
from lam.models.rendering.utils.utils import trunc_exp, MLP
from lam.models.rendering.gaussian_model import GaussianModel
from einops import rearrange, repeat
from pytorch3d.ops.points_normals import estimate_pointcloud_normals
os.environ["PYOPENGL_PLATFORM"] = "egl"
from pytorch3d.structures import Meshes, Pointclouds
from pytorch3d.renderer import (
AmbientLights,
PerspectiveCameras,
SoftSilhouetteShader,
SoftPhongShader,
RasterizationSettings,
MeshRenderer,
MeshRendererWithFragments,
MeshRasterizer,
TexturesVertex,
)
from pytorch3d.renderer.blending import BlendParams, softmax_rgb_blend
import lam.models.rendering.utils.mesh_utils as mesh_utils
from lam.models.rendering.utils.point_utils import depth_to_normal
from pytorch3d.ops.interp_face_attrs import interpolate_face_attributes
inverse_sigmoid = lambda x: np.log(x / (1 - x))
def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0):
Rt = np.zeros((4, 4))
Rt[:3, :3] = R.transpose()
Rt[:3, 3] = t
Rt[3, 3] = 1.0
C2W = np.linalg.inv(Rt)
cam_center = C2W[:3, 3]
cam_center = (cam_center + translate) * scale
C2W[:3, 3] = cam_center
Rt = np.linalg.inv(C2W)
return np.float32(Rt)
def getProjectionMatrix(znear, zfar, fovX, fovY):
tanHalfFovY = math.tan((fovY / 2))
tanHalfFovX = math.tan((fovX / 2))
top = tanHalfFovY * znear
bottom = -top
right = tanHalfFovX * znear
left = -right
P = torch.zeros(4, 4)
z_sign = 1.0
P[0, 0] = 2.0 * znear / (right - left)
P[1, 1] = 2.0 * znear / (top - bottom)
P[0, 2] = (right + left) / (right - left)
P[1, 2] = (top + bottom) / (top - bottom)
P[3, 2] = z_sign
P[2, 2] = z_sign * zfar / (zfar - znear)
P[2, 3] = -(zfar * znear) / (zfar - znear)
return P
def intrinsic_to_fov(intrinsic, w, h):
fx, fy = intrinsic[0, 0], intrinsic[1, 1]
fov_x = 2 * torch.arctan2(w, 2 * fx)
fov_y = 2 * torch.arctan2(h, 2 * fy)
return fov_x, fov_y
class Camera:
def __init__(self, w2c, intrinsic, FoVx, FoVy, height, width, trans=np.array([0.0, 0.0, 0.0]), scale=1.0) -> None:
self.FoVx = FoVx
self.FoVy = FoVy
self.height = int(height)
self.width = int(width)
self.world_view_transform = w2c.transpose(0, 1)
self.intrinsic = intrinsic
self.zfar = 100.0
self.znear = 0.01
self.trans = trans
self.scale = scale
self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0,1).to(w2c.device)
self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0)
self.camera_center = self.world_view_transform.inverse()[3, :3]
@staticmethod
def from_c2w(c2w, intrinsic, height, width):
w2c = torch.inverse(c2w)
FoVx, FoVy = intrinsic_to_fov(intrinsic, w=torch.tensor(width, device=w2c.device), h=torch.tensor(height, device=w2c.device))
return Camera(w2c=w2c, intrinsic=intrinsic, FoVx=FoVx, FoVy=FoVy, height=height, width=width)
class GSLayer(nn.Module):
def __init__(self, in_channels, use_rgb,
clip_scaling=0.2,
init_scaling=-5.0,
scale_sphere=False,
init_density=0.1,
sh_degree=None,
xyz_offset=True,
restrict_offset=True,
xyz_offset_max_step=None,
fix_opacity=False,
fix_rotation=False,
use_fine_feat=False,
pred_res=False,
):
super().__init__()
self.clip_scaling = clip_scaling
self.use_rgb = use_rgb
self.restrict_offset = restrict_offset
self.xyz_offset = xyz_offset
self.xyz_offset_max_step = xyz_offset_max_step # 1.2 / 32
self.fix_opacity = fix_opacity
self.fix_rotation = fix_rotation
self.use_fine_feat = use_fine_feat
self.scale_sphere = scale_sphere
self.pred_res = pred_res
self.attr_dict ={
"shs": (sh_degree + 1) ** 2 * 3,
"scaling": 3 if not scale_sphere else 1,
"xyz": 3,
"opacity": None,
"rotation": None
}
if not self.fix_opacity:
self.attr_dict["opacity"] = 1
if not self.fix_rotation:
self.attr_dict["rotation"] = 4
self.out_layers = nn.ModuleDict()
for key, out_ch in self.attr_dict.items():
if out_ch is None:
layer = nn.Identity()
else:
if key == "shs" and use_rgb:
out_ch = 3
if key == "shs":
shs_out_ch = out_ch
if pred_res:
layer = nn.Linear(in_channels+out_ch, out_ch)
else:
layer = nn.Linear(in_channels, out_ch)
# initialize
if not (key == "shs" and use_rgb):
if key == "opacity" and self.fix_opacity:
pass
elif key == "rotation" and self.fix_rotation:
pass
else:
nn.init.constant_(layer.weight, 0)
nn.init.constant_(layer.bias, 0)
if key == "scaling":
nn.init.constant_(layer.bias, init_scaling)
elif key == "rotation":
if not self.fix_rotation:
nn.init.constant_(layer.bias, 0)
nn.init.constant_(layer.bias[0], 1.0)
elif key == "opacity":
if not self.fix_opacity:
nn.init.constant_(layer.bias, inverse_sigmoid(init_density))
self.out_layers[key] = layer
if self.use_fine_feat:
fine_shs_layer = nn.Linear(in_channels, shs_out_ch)
nn.init.constant_(fine_shs_layer.weight, 0)
nn.init.constant_(fine_shs_layer.bias, 0)
self.out_layers["fine_shs"] = fine_shs_layer
def forward(self, x, pts, x_fine=None, gs_raw_attr=None, ret_raw=False, vtx_sym_idxs=None):
assert len(x.shape) == 2
ret = {}
if ret_raw:
raw_attr = {}
ori_x = x
for k in self.attr_dict:
# if vtx_sym_idxs is not None and k in ["shs", "scaling", "opacity"]:
if vtx_sym_idxs is not None and k in ["shs", "scaling", "opacity", "rotation"]:
# print("==="*16*3, "\n\n\n"+"use sym mean.", "\n"+"==="*16*3)
# x = (x + x[vtx_sym_idxs.to(x.device), :]) / 2.
x = ori_x[vtx_sym_idxs.to(x.device), :]
else:
x = ori_x
layer =self.out_layers[k]
if self.pred_res and (not self.fix_opacity or k != "opacity") and (not self.fix_rotation or k != "rotation"):
v = layer(torch.cat([gs_raw_attr[k], x], dim=-1))
v = gs_raw_attr[k] + v
else:
v = layer(x)
if ret_raw:
raw_attr[k] = v
if k == "rotation":
if self.fix_rotation:
v = matrix_to_quaternion(torch.eye(3).type_as(x)[None,: , :].repeat(x.shape[0], 1, 1)) # constant rotation
else:
# assert len(x.shape) == 2
v = torch.nn.functional.normalize(v)
elif k == "scaling":
v = trunc_exp(v)
if self.scale_sphere:
assert v.shape[-1] == 1
v = torch.cat([v, v, v], dim=-1)
if self.clip_scaling is not None:
v = torch.clamp(v, min=0, max=self.clip_scaling)
elif k == "opacity":
if self.fix_opacity:
v = torch.ones_like(x)[..., 0:1]
else:
v = torch.sigmoid(v)
elif k == "shs":
if self.use_rgb:
v[..., :3] = torch.sigmoid(v[..., :3])
if self.use_fine_feat:
v_fine = self.out_layers["fine_shs"](x_fine)
v_fine = torch.tanh(v_fine)
v = v + v_fine
else:
if self.use_fine_feat:
v_fine = self.out_layers["fine_shs"](x_fine)
v = v + v_fine
v = torch.reshape(v, (v.shape[0], -1, 3))
elif k == "xyz":
# TODO check
if self.restrict_offset:
max_step = self.xyz_offset_max_step
v = (torch.sigmoid(v) - 0.5) * max_step
if self.xyz_offset:
pass
else:
assert NotImplementedError
ret["offset"] = v
v = pts + v
ret[k] = v
if ret_raw:
return GaussianModel(**ret), raw_attr
else:
return GaussianModel(**ret)
class PointEmbed(nn.Module):
def __init__(self, hidden_dim=48, dim=128):
super().__init__()
assert hidden_dim % 6 == 0
self.embedding_dim = hidden_dim
e = torch.pow(2, torch.arange(self.embedding_dim // 6)).float() * np.pi
e = torch.stack([
torch.cat([e, torch.zeros(self.embedding_dim // 6),
torch.zeros(self.embedding_dim // 6)]),
torch.cat([torch.zeros(self.embedding_dim // 6), e,
torch.zeros(self.embedding_dim // 6)]),
torch.cat([torch.zeros(self.embedding_dim // 6),
torch.zeros(self.embedding_dim // 6), e]),
])
self.register_buffer('basis', e) # 3 x 16
self.mlp = nn.Linear(self.embedding_dim+3, dim)
self.norm = nn.LayerNorm(dim)
@staticmethod
def embed(input, basis):
projections = torch.einsum(
'bnd,de->bne', input, basis)
embeddings = torch.cat([projections.sin(), projections.cos()], dim=2)
return embeddings
def forward(self, input):
# input: B x N x 3
embed = self.mlp(torch.cat([self.embed(input, self.basis), input], dim=2)) # B x N x C
embed = self.norm(embed)
return embed
class CrossAttnBlock(nn.Module):
"""
Transformer block that takes in a cross-attention condition.
Designed for SparseLRM architecture.
"""
# Block contains a cross-attention layer, a self-attention layer, and an MLP
def __init__(self, inner_dim: int, cond_dim: int, num_heads: int, eps: float=None,
attn_drop: float = 0., attn_bias: bool = False,
mlp_ratio: float = 4., mlp_drop: float = 0., feedforward=False):
super().__init__()
# TODO check already apply normalization
# self.norm_q = nn.LayerNorm(inner_dim, eps=eps)
# self.norm_k = nn.LayerNorm(cond_dim, eps=eps)
self.norm_q = nn.Identity()
self.norm_k = nn.Identity()
self.cross_attn = nn.MultiheadAttention(
embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim,
dropout=attn_drop, bias=attn_bias, batch_first=True)
self.mlp = None
if feedforward:
self.norm2 = nn.LayerNorm(inner_dim, eps=eps)
self.self_attn = nn.MultiheadAttention(
embed_dim=inner_dim, num_heads=num_heads,
dropout=attn_drop, bias=attn_bias, batch_first=True)
self.norm3 = nn.LayerNorm(inner_dim, eps=eps)
self.mlp = nn.Sequential(
nn.Linear(inner_dim, int(inner_dim * mlp_ratio)),
nn.GELU(),
nn.Dropout(mlp_drop),
nn.Linear(int(inner_dim * mlp_ratio), inner_dim),
nn.Dropout(mlp_drop),
)
def forward(self, x, cond):
# x: [N, L, D]
# cond: [N, L_cond, D_cond]
x = self.cross_attn(self.norm_q(x), self.norm_k(cond), cond, need_weights=False)[0]
if self.mlp is not None:
before_sa = self.norm2(x)
x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0]
x = x + self.mlp(self.norm3(x))
return x
class DecoderCrossAttn(nn.Module):
def __init__(self, query_dim, context_dim, num_heads, mlp=False, decode_with_extra_info=None):
super().__init__()
self.query_dim = query_dim
self.context_dim = context_dim
self.cross_attn = CrossAttnBlock(inner_dim=query_dim, cond_dim=context_dim,
num_heads=num_heads, feedforward=mlp,
eps=1e-5)
self.decode_with_extra_info = decode_with_extra_info
if decode_with_extra_info is not None:
if decode_with_extra_info["type"] == "dinov2p14_feat":
context_dim = decode_with_extra_info["cond_dim"]
self.cross_attn_color = CrossAttnBlock(inner_dim=query_dim, cond_dim=context_dim,
num_heads=num_heads, feedforward=False, eps=1e-5)
elif decode_with_extra_info["type"] == "decoder_dinov2p14_feat":
from lam.models.encoders.dinov2_wrapper import Dinov2Wrapper
self.encoder = Dinov2Wrapper(model_name='dinov2_vits14_reg', freeze=False, encoder_feat_dim=384)
self.cross_attn_color = CrossAttnBlock(inner_dim=query_dim, cond_dim=384,
num_heads=num_heads, feedforward=False,
eps=1e-5)
elif decode_with_extra_info["type"] == "decoder_resnet18_feat":
from lam.models.encoders.xunet_wrapper import XnetWrapper
self.encoder = XnetWrapper(model_name='resnet18', freeze=False, encoder_feat_dim=64)
self.cross_attn_color = CrossAttnBlock(inner_dim=query_dim, cond_dim=64,
num_heads=num_heads, feedforward=False,
eps=1e-5)
def resize_image(self, image, multiply):
B, _, H, W = image.shape
new_h, new_w = math.ceil(H / multiply) * multiply, math.ceil(W / multiply) * multiply
image = F.interpolate(image, (new_h, new_w), align_corners=True, mode="bilinear")
return image
def forward(self, pcl_query, pcl_latent, extra_info=None):
out = self.cross_attn(pcl_query, pcl_latent)
if self.decode_with_extra_info is not None:
out_dict = {}
out_dict["coarse"] = out
if self.decode_with_extra_info["type"] == "dinov2p14_feat":
out = self.cross_attn_color(out, extra_info["image_feats"])
out_dict["fine"] = out
return out_dict
elif self.decode_with_extra_info["type"] == "decoder_dinov2p14_feat":
img_feat = self.encoder(extra_info["image"])
out = self.cross_attn_color(out, img_feat)
out_dict["fine"] = out
return out_dict
elif self.decode_with_extra_info["type"] == "decoder_resnet18_feat":
image = extra_info["image"]
image = self.resize_image(image, multiply=32)
img_feat = self.encoder(image)
out = self.cross_attn_color(out, img_feat)
out_dict["fine"] = out
return out_dict
return out
class GS3DRenderer(nn.Module):
def __init__(self, human_model_path, subdivide_num, smpl_type, feat_dim, query_dim,
use_rgb, sh_degree, xyz_offset_max_step, mlp_network_config,
expr_param_dim, shape_param_dim,
clip_scaling=0.2,
scale_sphere=False,
skip_decoder=False,
fix_opacity=False,
fix_rotation=False,
decode_with_extra_info=None,
gradient_checkpointing=False,
add_teeth=True,
teeth_bs_flag=False,
oral_mesh_flag=False,
**kwargs,
):
super().__init__()
print(f"#########scale sphere:{scale_sphere}, add_teeth:{add_teeth}")
self.gradient_checkpointing = gradient_checkpointing
self.skip_decoder = skip_decoder
self.smpl_type = smpl_type
assert self.smpl_type == "flame"
self.sym_rend2 = True
self.teeth_bs_flag = teeth_bs_flag
self.oral_mesh_flag = oral_mesh_flag
self.render_rgb = kwargs.get("render_rgb", True)
print("==="*16*3, "\n Render rgb:", self.render_rgb, "\n"+"==="*16*3)
self.scaling_modifier = 1.0
self.sh_degree = sh_degree
if use_rgb:
self.sh_degree = 0
use_rgb = use_rgb
self.flame_model = FlameHeadSubdivided(
300,
100,
add_teeth=add_teeth,
add_shoulder=False,
flame_model_path=f'{human_model_path}/flame_assets/flame/flame2023.pkl',
flame_lmk_embedding_path=f"{human_model_path}/flame_assets/flame/landmark_embedding_with_eyes.npy",
flame_template_mesh_path=f"{human_model_path}/flame_assets/flame/head_template_mesh.obj",
flame_parts_path=f"{human_model_path}/flame_assets/flame/FLAME_masks.pkl",
subdivide_num=subdivide_num,
teeth_bs_flag=teeth_bs_flag,
oral_mesh_flag=oral_mesh_flag
)
if not self.skip_decoder:
self.pcl_embed = PointEmbed(dim=query_dim)
self.mlp_network_config = mlp_network_config
if self.mlp_network_config is not None:
self.mlp_net = MLP(query_dim, query_dim, **self.mlp_network_config)
init_scaling = -5.0
self.gs_net = GSLayer(in_channels=query_dim,
use_rgb=use_rgb,
sh_degree=self.sh_degree,
clip_scaling=clip_scaling,
scale_sphere=scale_sphere,
init_scaling=init_scaling,
init_density=0.1,
xyz_offset=True,
restrict_offset=True,
xyz_offset_max_step=xyz_offset_max_step,
fix_opacity=fix_opacity,
fix_rotation=fix_rotation,
use_fine_feat=True if decode_with_extra_info is not None and decode_with_extra_info["type"] is not None else False,
)
def forward_single_view(self,
gs: GaussianModel,
viewpoint_camera: Camera,
background_color: Optional[Float[Tensor, "3"]],
):
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
screenspace_points = torch.zeros_like(gs.xyz, dtype=gs.xyz.dtype, requires_grad=True, device=self.device) + 0
try:
screenspace_points.retain_grad()
except:
pass
bg_color = background_color
# Set up rasterization configuration
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
GSRSettings = GaussianRasterizationSettings
GSR = GaussianRasterizer
raster_settings = GSRSettings(
image_height=int(viewpoint_camera.height),
image_width=int(viewpoint_camera.width),
tanfovx=tanfovx,
tanfovy=tanfovy,
bg=bg_color,
scale_modifier=self.scaling_modifier,
viewmatrix=viewpoint_camera.world_view_transform,
projmatrix=viewpoint_camera.full_proj_transform.float(),
sh_degree=self.sh_degree,
campos=viewpoint_camera.camera_center,
prefiltered=False,
debug=False
)
rasterizer = GSR(raster_settings=raster_settings)
means3D = gs.xyz
means2D = screenspace_points
opacity = gs.opacity
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
# scaling / rotation by the rasterizer.
scales = None
rotations = None
cov3D_precomp = None
scales = gs.scaling
rotations = gs.rotation
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
shs = None
colors_precomp = None
if self.gs_net.use_rgb:
colors_precomp = gs.shs.squeeze(1)
else:
shs = gs.shs
# Rasterize visible Gaussians to image, obtain their radii (on screen).
# torch.cuda.synchronize()
# with boxx.timeit():
with torch.autocast(device_type=self.device.type, dtype=torch.float32):
raster_ret = rasterizer(
means3D = means3D.float(),
means2D = means2D.float(),
shs = shs.float() if not self.gs_net.use_rgb else None,
colors_precomp = colors_precomp.float() if colors_precomp is not None else None,
opacities = opacity.float(),
scales = scales.float(),
rotations = rotations.float(),
cov3D_precomp = cov3D_precomp
)
rendered_image, radii, rendered_depth, rendered_alpha = raster_ret
ret = {
"comp_rgb": rendered_image.permute(1, 2, 0), # [H, W, 3]
"comp_rgb_bg": bg_color,
'comp_mask': rendered_alpha.permute(1, 2, 0),
'comp_depth': rendered_depth.permute(1, 2, 0),
}
return ret
def animate_gs_model(self, gs_attr: GaussianModel, query_points, flame_data, debug=False):
"""
query_points: [N, 3]
"""
device = gs_attr.xyz.device
if debug:
N = gs_attr.xyz.shape[0]
gs_attr.xyz = torch.ones_like(gs_attr.xyz) * 0.0
rotation = matrix_to_quaternion(torch.eye(3).float()[None, :, :].repeat(N, 1, 1)).to(device) # constant rotation
opacity = torch.ones((N, 1)).float().to(device) # constant opacity
gs_attr.opacity = opacity
gs_attr.rotation = rotation
# gs_attr.scaling = torch.ones_like(gs_attr.scaling) * 0.05
# print(gs_attr.shs.shape)
with torch.autocast(device_type=device.type, dtype=torch.float32):
# mean_3d = query_points + gs_attr.xyz # [N, 3]
mean_3d = gs_attr.xyz # [N, 3]
num_view = flame_data["expr"].shape[0] # [Nv, 100]
mean_3d = mean_3d.unsqueeze(0).repeat(num_view, 1, 1) # [Nv, N, 3]
query_points = query_points.unsqueeze(0).repeat(num_view, 1, 1)
if self.teeth_bs_flag:
expr = torch.cat([flame_data['expr'], flame_data['teeth_bs']], dim=-1)
else:
expr = flame_data["expr"]
ret = self.flame_model.animation_forward(v_cano=mean_3d,
shape=flame_data["betas"].repeat(num_view, 1),
expr=expr,
rotation=flame_data["rotation"],
neck=flame_data["neck_pose"],
jaw=flame_data["jaw_pose"],
eyes=flame_data["eyes_pose"],
translation=flame_data["translation"],
zero_centered_at_root_node=False,
return_landmarks=False,
return_verts_cano=False,
# static_offset=flame_data['static_offset'].to('cuda'),
static_offset=None,
)
mean_3d = ret["animated"]
gs_attr_list = []
for i in range(num_view):
gs_attr_copy = GaussianModel(xyz=mean_3d[i],
opacity=gs_attr.opacity,
rotation=gs_attr.rotation,
scaling=gs_attr.scaling,
shs=gs_attr.shs,
albedo=gs_attr.albedo,
lights=gs_attr.lights,
offset=gs_attr.offset) # [N, 3]
gs_attr_list.append(gs_attr_copy)
return gs_attr_list
def forward_gs_attr(self, x, query_points, flame_data, debug=False, x_fine=None, vtx_sym_idxs=None):
"""
x: [N, C] Float[Tensor, "Np Cp"],
query_points: [N, 3] Float[Tensor, "Np 3"]
"""
device = x.device
if self.mlp_network_config is not None:
x = self.mlp_net(x)
if x_fine is not None:
x_fine = self.mlp_net(x_fine)
gs_attr: GaussianModel = self.gs_net(x, query_points, x_fine, vtx_sym_idxs=vtx_sym_idxs)
return gs_attr
def get_query_points(self, flame_data, device):
with torch.no_grad():
with torch.autocast(device_type=device.type, dtype=torch.float32):
# print(flame_data["betas"].shape, flame_data["face_offset"].shape, flame_data["joint_offset"].shape)
# positions, _, transform_mat_neutral_pose = self.flame_model.get_query_points(flame_data, device=device) # [B, N, 3]
positions = self.flame_model.get_cano_verts(shape_params=flame_data["betas"]) # [B, N, 3]
# print(f"positions shape:{positions.shape}")
return positions, flame_data
def query_latent_feat(self,
positions: Float[Tensor, "*B N1 3"],
flame_data,
latent_feat: Float[Tensor, "*B N2 C"],
extra_info):
device = latent_feat.device
if self.skip_decoder:
gs_feats = latent_feat
assert positions is not None
else:
assert positions is None
if positions is None:
positions, flame_data = self.get_query_points(flame_data, device)
with torch.autocast(device_type=device.type, dtype=torch.float32):
pcl_embed = self.pcl_embed(positions)
gs_feats = pcl_embed
return gs_feats, positions, flame_data
def forward_single_batch(
self,
gs_list: list[GaussianModel],
c2ws: Float[Tensor, "Nv 4 4"],
intrinsics: Float[Tensor, "Nv 4 4"],
height: int,
width: int,
background_color: Optional[Float[Tensor, "Nv 3"]],
debug: bool=False,
):
out_list = []
self.device = gs_list[0].xyz.device
for v_idx, (c2w, intrinsic) in enumerate(zip(c2ws, intrinsics)):
out_list.append(self.forward_single_view(
gs_list[v_idx],
Camera.from_c2w(c2w, intrinsic, height, width),
background_color[v_idx],
))
out = defaultdict(list)
for out_ in out_list:
for k, v in out_.items():
out[k].append(v)
out = {k: torch.stack(v, dim=0) for k, v in out.items()}
out["3dgs"] = gs_list
return out
def get_sing_batch_smpl_data(self, smpl_data, bidx):
smpl_data_single_batch = {}
for k, v in smpl_data.items():
smpl_data_single_batch[k] = v[bidx] # e.g. body_pose: [B, N_v, 21, 3] -> [N_v, 21, 3]
if k == "betas" or (k == "joint_offset") or (k == "face_offset"):
smpl_data_single_batch[k] = v[bidx:bidx+1] # e.g. betas: [B, 100] -> [1, 100]
return smpl_data_single_batch
def get_single_view_smpl_data(self, smpl_data, vidx):
smpl_data_single_view = {}
for k, v in smpl_data.items():
assert v.shape[0] == 1
if k == "betas" or (k == "joint_offset") or (k == "face_offset") or (k == "transform_mat_neutral_pose"):
smpl_data_single_view[k] = v # e.g. betas: [1, 100] -> [1, 100]
else:
smpl_data_single_view[k] = v[:, vidx: vidx + 1] # e.g. body_pose: [1, N_v, 21, 3] -> [1, 1, 21, 3]
return smpl_data_single_view
def forward_gs(self,
gs_hidden_features: Float[Tensor, "B Np Cp"],
query_points: Float[Tensor, "B Np_q 3"],
flame_data, # e.g., body_pose:[B, Nv, 21, 3], betas:[B, 100]
additional_features: Optional[dict] = None,
debug: bool = False,
**kwargs):
batch_size = gs_hidden_features.shape[0]
query_gs_features, query_points, flame_data = self.query_latent_feat(query_points, flame_data, gs_hidden_features,
additional_features)
gs_model_list = []
all_query_points = []
for b in range(batch_size):
all_query_points.append(query_points[b:b+1, :])
if isinstance(query_gs_features, dict):
ret_gs = self.forward_gs_attr(query_gs_features["coarse"][b], query_points[b], None, debug,
x_fine=query_gs_features["fine"][b], vtx_sym_idxs=None)
else:
ret_gs = self.forward_gs_attr(query_gs_features[b], query_points[b], None, debug, vtx_sym_idxs=None)
ret_gs.update_albedo(ret_gs.shs.clone())
gs_model_list.append(ret_gs)
query_points = torch.cat(all_query_points, dim=0)
return gs_model_list, query_points, flame_data, query_gs_features
def forward_res_refine_gs(self,
gs_hidden_features: Float[Tensor, "B Np Cp"],
query_points: Float[Tensor, "B Np_q 3"],
flame_data, # e.g., body_pose:[B, Nv, 21, 3], betas:[B, 100]
additional_features: Optional[dict] = None,
debug: bool = False,
gs_raw_attr_list: list = None,
**kwargs):
batch_size = gs_hidden_features.shape[0]
query_gs_features, query_points, flame_data = self.query_latent_feat(query_points, flame_data, gs_hidden_features,
additional_features)
gs_model_list = []
for b in range(batch_size):
gs_model = self.gs_refine_net(query_gs_features[b], query_points[b], x_fine=None, gs_raw_attr=gs_raw_attr_list[b])
gs_model_list.append(gs_model)
return gs_model_list, query_points, flame_data, query_gs_features
def forward_animate_gs(self, gs_model_list, query_points, flame_data, c2w, intrinsic, height, width,
background_color, debug=False):
batch_size = len(gs_model_list)
out_list = []
for b in range(batch_size):
gs_model = gs_model_list[b]
query_pt = query_points[b]
animatable_gs_model_list: list[GaussianModel] = self.animate_gs_model(gs_model,
query_pt,
self.get_sing_batch_smpl_data(flame_data, b),
debug=debug)
assert len(animatable_gs_model_list) == c2w.shape[1]
out_list.append(self.forward_single_batch(
animatable_gs_model_list,
c2w[b],
intrinsic[b],
height, width,
background_color[b] if background_color is not None else None,
debug=debug))
out = defaultdict(list)
for out_ in out_list:
for k, v in out_.items():
out[k].append(v)
for k, v in out.items():
if isinstance(v[0], torch.Tensor):
out[k] = torch.stack(v, dim=0)
else:
out[k] = v
render_keys = ["comp_rgb", "comp_mask", "comp_depth"]
for key in render_keys:
out[key] = rearrange(out[key], "b v h w c -> b v c h w")
return out
def project_single_view_feats(self, img_vtx_ids, feats, nv, inter_feat=True):
b, h, w, k = img_vtx_ids.shape
c, ih, iw = feats.shape
vtx_ids = img_vtx_ids
if h != ih or w != iw:
if inter_feat:
feats = torch.nn.functional.interpolate(
rearrange(feats, "(b c) h w -> b c h w", b=1).float(), (h, w)
).squeeze(0)
vtx_ids = rearrange(vtx_ids, "b (c h) w k -> (b k) c h w", c=1).long().squeeze(1)
else:
vtx_ids = torch.nn.functional.interpolate(
rearrange(vtx_ids, "b (c h) w k -> (b k) c h w", c=1).float(), (ih, iw), mode="nearest"
).long().squeeze(1)
else:
vtx_ids = rearrange(vtx_ids, "b h w k -> (b k) h w", b=1).long()
vis_mask = vtx_ids > 0
vtx_ids = vtx_ids[vis_mask] # n
vtx_ids = repeat(vtx_ids, "n -> n c", c=c)
feats = repeat(feats, "c h w -> k h w c", k=k).to(vtx_ids.device)
feats = feats[vis_mask, :] # n, c
sums = torch.zeros((nv, c), dtype=feats.dtype, device=feats.device)
counts = torch.zeros((nv), dtype=torch.int64, device=feats.device)
sums.scatter_add_(0, vtx_ids, feats)
one_hot = torch.ones_like(vtx_ids[:, 0], dtype=torch.int64).to(feats.device)
counts.scatter_add_(0, vtx_ids[:, 0], one_hot)
clamp_counts = counts.clamp(min=1)
mean_feats = sums / clamp_counts.view(-1, 1)
return mean_feats
def forward(self,
gs_hidden_features: Float[Tensor, "B Np Cp"],
query_points: Float[Tensor, "B Np 3"],
flame_data, # e.g., body_pose:[B, Nv, 21, 3], betas:[B, 100]
c2w: Float[Tensor, "B Nv 4 4"],
intrinsic: Float[Tensor, "B Nv 4 4"],
height,
width,
additional_features: Optional[Float[Tensor, "B C H W"]] = None,
background_color: Optional[Float[Tensor, "B Nv 3"]] = None,
debug: bool = False,
**kwargs):
# need shape_params of flame_data to get querty points and get "transform_mat_neutral_pose"
gs_model_list, query_points, flame_data, query_gs_features = self.forward_gs(gs_hidden_features, query_points, flame_data=flame_data,
additional_features=additional_features, debug=debug)
out = self.forward_animate_gs(gs_model_list, query_points, flame_data, c2w, intrinsic, height, width, background_color, debug)
return out
def test_head():
import cv2
human_model_path = "./pretrained_models/human_model_files"
device = "cuda"
from accelerate.utils import set_seed
set_seed(1234)
from lam.datasets.video_head import VideoHeadDataset
root_dir = "./train_data/vfhq_vhap/export"
meta_path = "./train_data/vfhq_vhap/label/valid_id_list.json"
# root_dir = "./train_data/nersemble/export"
# meta_path = "./train_data/nersemble/label/valid_id_list1.json"
dataset = VideoHeadDataset(root_dirs=root_dir, meta_path=meta_path, sample_side_views=7,
render_image_res_low=512, render_image_res_high=512,
render_region_size=(512, 512), source_image_res=512,
enlarge_ratio=[0.8, 1.2],
debug=False)
data = dataset[0]
def get_flame_params(data):
flame_params = {}
flame_keys = ['root_pose', 'body_pose', 'jaw_pose', 'leye_pose', 'reye_pose', 'lhand_pose', 'rhand_pose', 'expr', 'trans', 'betas',\
'rotation', 'neck_pose', 'eyes_pose', 'translation']
for k, v in data.items():
if k in flame_keys:
# print(k, v.shape)
flame_params[k] = data[k]
return flame_params
flame_data = get_flame_params(data)
flame_data_tmp = {}
for k, v in flame_data.items():
flame_data_tmp[k] = v.unsqueeze(0).to(device)
print(k, v.shape)
flame_data = flame_data_tmp
c2ws = data["c2ws"].unsqueeze(0).to(device)
intrs = data["intrs"].unsqueeze(0).to(device)
render_images = data["render_image"].numpy()
render_h = data["render_full_resolutions"][0, 0]
render_w= data["render_full_resolutions"][0, 1]
render_bg_colors = data["render_bg_colors"].unsqueeze(0).to(device)
print("c2ws", c2ws.shape, "intrs", intrs.shape, intrs)
gs_render = GS3DRenderer(human_model_path=human_model_path, subdivide_num=2, smpl_type="flame",
feat_dim=64, query_dim=64, use_rgb=True, sh_degree=3, mlp_network_config=None,
xyz_offset_max_step=0.0001, expr_param_dim=10, shape_param_dim=10,
fix_opacity=True, fix_rotation=True, clip_scaling=0.001, add_teeth=False)
gs_render.to(device)
out = gs_render.forward(gs_hidden_features=torch.zeros((1, 2048, 64)).float().to(device),
query_points=None,
flame_data=flame_data,
c2w=c2ws,
intrinsic=intrs,
height=render_h,
width=render_w,
background_color=render_bg_colors,
debug=False)
os.makedirs("./debug_vis/gs_render", exist_ok=True)
for k, v in out.items():
if k == "comp_rgb_bg":
print("comp_rgb_bg", v)
continue
for b_idx in range(len(v)):
if k == "3dgs":
for v_idx in range(len(v[b_idx])):
v[b_idx][v_idx].save_ply(f"./debug_vis/gs_render/{b_idx}_{v_idx}.ply")
continue
for v_idx in range(v.shape[1]):
save_path = os.path.join("./debug_vis/gs_render", f"{b_idx}_{v_idx}_{k}.jpg")
if "normal" in k:
img = ((v[b_idx, v_idx].permute(1, 2, 0).detach().cpu().numpy() + 1.0) / 2. * 255).astype(np.uint8)
else:
img = (v[b_idx, v_idx].permute(1, 2, 0).detach().cpu().numpy() * 255).astype(np.uint8)
print(v[b_idx, v_idx].shape, img.shape, save_path)
if "mask" in k:
render_img = render_images[v_idx].transpose(1, 2, 0) * 255
blend_img = (render_images[v_idx].transpose(1, 2, 0) * 255 * 0.5 + np.tile(img, (1, 1, 3)) * 0.5).clip(0, 255).astype(np.uint8)
cv2.imwrite(save_path, np.hstack([np.tile(img, (1, 1, 3)), render_img.astype(np.uint8), blend_img])[:, :, (2, 1, 0)])
else:
print(save_path, k)
cv2.imwrite(save_path, img)
if __name__ == "__main__":
test_head()
|