Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,493 Bytes
17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
from plyfile import PlyData, PlyElement
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
import copy
from lam.models.rendering.utils.typing import *
from lam.models.rendering.utils.utils import trunc_exp, MLP
from einops import rearrange, repeat
inverse_sigmoid = lambda x: np.log(x / (1 - x))
class GaussianModel:
def __init__(self, xyz=None, opacity=None, rotation=None, scaling=None, shs=None, offset=None, ply_path=None, sh2rgb=False, albedo=None, lights=None) -> None:
self.xyz: Tensor = xyz
self.opacity: Tensor = opacity
self.rotation: Tensor = rotation
self.scaling: Tensor = scaling
self.shs: Tensor = shs
self.albedo: Tensor = albedo
self.offset: Tensor = offset
self.lights: Tensor = lights
if ply_path is not None:
self.load_ply(ply_path, sh2rgb=sh2rgb)
def update_lights(self, lights):
self.lights = lights
def update_albedo(self, albedo):
self.albedo = albedo
def update_shs(self, shs):
self.shs = shs
def to_cuda(self):
self.xyz = self.xyz.cuda()
self.opacity = self.opacity.cuda()
self.rotation = self.rotation.cuda()
self.scaling = self.scaling.cuda()
self.shs = self.shs.cuda()
self.offset = self.offset.cuda()
self.albedo = self.albedo.cuda()
def construct_list_of_attributes(self):
l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
if len(self.shs.shape) == 2:
features_dc = self.shs[:, :3].unsqueeze(1)
features_rest = self.shs[:, 3:].unsqueeze(1)
else:
features_dc = self.shs[:, :1]
features_rest = self.shs[:, 1:]
for i in range(features_dc.shape[1]*features_dc.shape[2]):
l.append('f_dc_{}'.format(i))
for i in range(features_rest.shape[1]*features_rest.shape[2]):
l.append('f_rest_{}'.format(i))
l.append('opacity')
for i in range(self.scaling.shape[1]):
l.append('scale_{}'.format(i))
for i in range(self.rotation.shape[1]):
l.append('rot_{}'.format(i))
return l
def save_ply(self, path, rgb2sh=False, offset2xyz=False, albedo2rgb=False):
if offset2xyz:
xyz = self.offset.detach().cpu().float().numpy()
else:
xyz = self.xyz.detach().cpu().float().numpy()
if albedo2rgb:
self.shs = self.albedo
normals = np.zeros_like(xyz)
if len(self.shs.shape) == 2:
features_dc = self.shs[:, :3].unsqueeze(1).float()
features_rest = self.shs[:, 3:].unsqueeze(1).float()
else:
features_dc = self.shs[:, :1].float()
features_rest = self.shs[:, 1:].float()
f_dc = features_dc.detach().flatten(start_dim=1).contiguous().cpu().numpy()
f_rest = features_rest.detach().flatten(start_dim=1).contiguous().cpu().numpy()
if rgb2sh:
from lam.models.rendering.utils.sh_utils import RGB2SH
f_dc = RGB2SH(f_dc)
opacities = inverse_sigmoid(torch.clamp(self.opacity, 1e-3, 1 - 1e-3).detach().cpu().float().numpy())
scale = np.log(self.scaling.detach().cpu().float().numpy())
rotation = self.rotation.detach().cpu().float().numpy()
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
elements = np.empty(xyz.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, 'vertex')
PlyData([el]).write(path)
def save_ply_nodeact(self, path, rgb2sh=False, albedo2rgb=False):
if albedo2rgb:
self.shs = self.albedo
xyz = self.xyz.detach().cpu().float().numpy()
normals = np.zeros_like(xyz)
if len(self.shs.shape) == 2:
features_dc = self.shs[:, :3].unsqueeze(1).float()
features_rest = self.shs[:, 3:].unsqueeze(1).float()
else:
features_dc = self.shs[:, :1].float()
features_rest = self.shs[:, 1:].float()
f_dc = features_dc.detach().flatten(start_dim=1).contiguous().cpu().numpy()
f_rest = features_rest.detach().flatten(start_dim=1).contiguous().cpu().numpy()
if rgb2sh:
from lam.models.rendering.utils.sh_utils import RGB2SH
f_dc = RGB2SH(f_dc)
opacities = self.opacity.detach().cpu().float().numpy()
scale = self.scaling.detach().cpu().float().numpy()
rotation = self.rotation.detach().cpu().float().numpy()
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
elements = np.empty(xyz.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, 'vertex')
PlyData([el]).write(path)
def load_ply(self, path, sh2rgb=False):
plydata = PlyData.read(path)
xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
np.asarray(plydata.elements[0]["y"]),
np.asarray(plydata.elements[0]["z"])), axis=1)
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]
features_dc = np.zeros((xyz.shape[0], 3, 1))
features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"])
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])
self.sh_degree = 0
extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")]
extra_f_names = sorted(extra_f_names, key = lambda x: int(x.split('_')[-1]))
features_extra = np.zeros((xyz.shape[0], len(extra_f_names)))
for idx, attr_name in enumerate(extra_f_names):
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name])
# Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC)
features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.sh_degree + 1) ** 2 - 1))
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1]))
scales = np.zeros((xyz.shape[0], len(scale_names)))
for idx, attr_name in enumerate(scale_names):
scales[:, idx] = np.asarray(plydata.elements[0][attr_name])
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot_")]
rot_names = sorted(rot_names, key = lambda x: int(x.split('_')[-1]))
rots = np.zeros((xyz.shape[0], len(rot_names)))
for idx, attr_name in enumerate(rot_names):
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
self.xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cpu").requires_grad_(False))
self.features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cpu").transpose(1, 2).contiguous().requires_grad_(False))
if sh2rgb:
from lam.models.rendering.utils.sh_utils import SH2RGB
self.features_dc = SH2RGB(self.features_dc)
self.features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cpu").transpose(1, 2).contiguous().requires_grad_(False))
self.shs = torch.cat([self.features_dc, self.features_rest], dim=1)
self.opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cpu").requires_grad_(False))
self.scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cpu").requires_grad_(False))
self.rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cpu").requires_grad_(False))
self.offset = nn.Parameter(torch.zeros_like(self.xyz).requires_grad_(False))
self.albedo = nn.Parameter(torch.zeros_like(self.shs).requires_grad_(False))
self.lights = nn.Parameter(torch.zeros_like(self.shs).requires_grad_(False))
if sh2rgb:
self.opacity = nn.functional.sigmoid(self.opacity)
self.scaling = trunc_exp(self.scaling)
self.active_sh_degree = self.sh_degree
|