File size: 5,041 Bytes
17cd746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import torch
import torch.nn as nn
from accelerate.logging import get_logger

logger = get_logger(__name__)


class DPTHead(nn.Module):
    def __init__(
        self, 
        in_channels, 
        inner_channels, 
        use_clstoken=False,
        out_channel=1024,
    ):
        super(DPTHead, self).__init__()
        
        self.use_clstoken = use_clstoken
        self.projects = nn.ModuleList([
            nn.Conv2d(
                in_channels=in_channels,
                out_channels=out_channel,
                kernel_size=1,
                stride=1,
                padding=0,
            ) for out_channel in inner_channels
        ])
        
        if use_clstoken:
            self.readout_projects = nn.ModuleList()
            for _ in range(len(self.projects)):
                self.readout_projects.append(
                    nn.Sequential(
                        nn.Linear(2 * in_channels, in_channels),
                        nn.GELU()))
        
        self.output_conv = nn.Conv2d(sum(inner_channels) , out_channel, kernel_size=1, stride=1, padding=0)
        
    
    def forward(self, out_features, patch_h, patch_w):
        out = []
        for i, x in enumerate(out_features):
            if self.use_clstoken:
                x, cls_token = x[0], x[1]
                readout = cls_token.unsqueeze(1).expand_as(x)
                x = self.readout_projects[i](torch.cat((x, readout), -1))
            else:
                x = x[0]
            
            x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
            
            x = self.projects[i](x)
            
            out.append(x)
        
        fusion_feats = torch.cat(out, dim=1)        

        fusion_feats = self.output_conv(fusion_feats)
        
        return fusion_feats


class Dinov2FusionWrapper(nn.Module):
    """
    Dinov2FusionWrapper using original implementation, hacked with modulation.
    """
    def __init__(self, model_name: str, modulation_dim: int = None, freeze: bool = True, encoder_feat_dim: int = 384):
        super().__init__()
        self.modulation_dim = modulation_dim
        self.model = self._build_dinov2(model_name, modulation_dim=modulation_dim)
        
        self.intermediate_layer_idx_info = {
            'dinov2_vits14_reg': [2, 5, 8, 11],
            'dinov2_vitb14_reg': [2, 5, 8, 11], 
            'dinov2_vitl14_reg': [4, 11, 17, 23], 
            'dinov2_vitg14_reg': [9, 19, 29, 39]
        }
        
        self.intermediate_layer_idx = self.intermediate_layer_idx_info[model_name]
        self.fusion_head = DPTHead(in_channels=self.model.embed_dim, 
                                   inner_channels=[self.model.embed_dim] * 4, 
                                   out_channel=encoder_feat_dim)

        if freeze:
            if modulation_dim is not None:
                raise ValueError("Modulated Dinov2 requires training, freezing is not allowed.")
            self._freeze()


    def _freeze(self):
        # logger.warning(f"======== Freezing Dinov2FusionWrapper ========")
        self.model.eval()
        for name, param in self.model.named_parameters():
            param.requires_grad = False

    @staticmethod
    def _build_dinov2(model_name: str, modulation_dim: int = None, pretrained: bool = True):
        from importlib import import_module
        dinov2_hub = import_module(".dinov2.hub.backbones", package=__package__)
        model_fn = getattr(dinov2_hub, model_name)
        # logger.debug(f"Modulation dim for Dinov2 is {modulation_dim}.")
        model = model_fn(modulation_dim=modulation_dim, pretrained=pretrained)
        return model

    @torch.compile
    def forward(self, image: torch.Tensor, mod: torch.Tensor = None):
        # image: [N, C, H, W]
        # mod: [N, D] or None
        # RGB image with [0,1] scale and properly sized
        
        patch_h, patch_w = image.shape[-2] // self.model.patch_size, image.shape[-1] // self.model.patch_size
        
        features = self.model.get_intermediate_layers(image, self.intermediate_layer_idx, return_class_token=True)
        
        out_local = self.fusion_head(features,  patch_h, patch_w)

        out_global = None
        if out_global is not None:
            ret = torch.cat([out_local.permute(0, 2, 3, 1).flatten(1, 2), out_global.unsqueeze(1)], dim=1)
        else:
            ret = out_local.permute(0, 2, 3, 1).flatten(1, 2)
        return ret