Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,881 Bytes
17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from functools import partial
import torch
__all__ = ['MixerDataset']
class MixerDataset(torch.utils.data.Dataset):
def __init__(self,
split: str,
subsets: dict,
**dataset_kwargs,
):
subsets = [e for e in subsets if e["meta_path"][split] is not None]
self.subsets = [
self._dataset_fn(subset, split)(**dataset_kwargs)
for subset in subsets
]
self.virtual_lens = [
math.ceil(subset_config['sample_rate'] * len(subset_obj))
for subset_config, subset_obj in zip(subsets, self.subsets)
]
@staticmethod
def _dataset_fn(subset_config: dict, split: str):
name = subset_config['name']
dataset_cls = None
if name == "exavatar":
from .exavatar import ExAvatarDataset
dataset_cls = ExAvatarDataset
elif name == "humman":
from .humman import HuMManDataset
dataset_cls = HuMManDataset
elif name == "humman_ori":
from .humman_ori import HuMManOriDataset
dataset_cls = HuMManOriDataset
elif name == "static_human":
from .static_human import StaticHumanDataset
dataset_cls = StaticHumanDataset
elif name == "singleview_human":
from .singleview_human import SingleViewHumanDataset
dataset_cls = SingleViewHumanDataset
elif name == "singleview_square_human":
from .singleview_square_human import SingleViewSquareHumanDataset
dataset_cls = SingleViewSquareHumanDataset
elif name == "bedlam":
from .bedlam import BedlamDataset
dataset_cls = BedlamDataset
elif name == "dna_human":
from .dna import DNAHumanDataset
dataset_cls = DNAHumanDataset
elif name == "video_human":
from .video_human import VideoHumanDataset
dataset_cls = VideoHumanDataset
elif name == "video_head":
from .video_head import VideoHeadDataset
dataset_cls = VideoHeadDataset
elif name == "video_head_gagtrack":
from .video_head_gagtrack import VideoHeadGagDataset
dataset_cls = VideoHeadGagDataset
elif name == "objaverse":
from .objaverse import ObjaverseDataset
dataset_cls = ObjaverseDataset
# elif name == 'mvimgnet':
# from .mvimgnet import MVImgNetDataset
# dataset_cls = MVImgNetDataset
else:
raise NotImplementedError(f"Dataset {name} not implemented")
print("==="*16*3, "\nUse dataset loader:", name, "\n"+"==="*3*16)
return partial(
dataset_cls,
root_dirs=subset_config['root_dirs'],
meta_path=subset_config['meta_path'][split],
)
def __len__(self):
return sum(self.virtual_lens)
def __getitem__(self, idx):
subset_idx = 0
virtual_idx = idx
while virtual_idx >= self.virtual_lens[subset_idx]:
virtual_idx -= self.virtual_lens[subset_idx]
subset_idx += 1
real_idx = virtual_idx % len(self.subsets[subset_idx])
return self.subsets[subset_idx][real_idx]
|