Add column to data
Browse files
app.py
CHANGED
@@ -196,20 +196,16 @@ with gr.Blocks(title='3D Animation Arena', head=head, css_paths='static/style.cs
|
|
196 |
- GVHMR (https://github.com/zju3dv/GVHMR)
|
197 |
- HybrIK (https://github.com/jeffffffli/HybrIK)
|
198 |
- WHAM (https://github.com/yohanshin/WHAM)
|
199 |
-
- CameraHMR (https://github.com/pixelite1201/CameraHMR)
|
200 |
-
- STAF (https://github.com/yw0208/STAF)
|
201 |
-
- TokenHMR (https://github.com/saidwivedi/TokenHMR)
|
202 |
|
203 |
All inferences are precomputed following the code in the associated GitHub repository.
|
204 |
Some post-inference modifications have been made to some models in order to make the comparison possible.
|
205 |
These modifications include:
|
206 |
* Adjusting height to a common ground
|
207 |
* Fixing the root depth of certain models, when depth was extremely jittery
|
|
|
208 |
|
209 |
All models use the SMPL body model to discard the influence of the body model on the comparison.
|
210 |
These choices were made without any intention to favor or harm any model.
|
211 |
-
|
212 |
-
The videos were selected to tests models on a large variety of motions, don't hesitate to send me your videos if you want to have it uploaded in the arena!
|
213 |
All matchups are generated randomly, don't hesitate to rate the same videos multiple times as the matchups will probably be different!
|
214 |
|
215 |
---
|
@@ -307,6 +303,7 @@ with gr.Blocks(title='3D Animation Arena', head=head, css_paths='static/style.cs
|
|
307 |
async def process_rating(state, i, criteria):
|
308 |
return gr.update(value=await submit_rating(
|
309 |
criteria=criteria,
|
|
|
310 |
winner=state['modelLeft'] if i == 0 else state['modelRight'] if i == 2 else None,
|
311 |
loser=state['modelRight'] if i == 0 else state['modelLeft'] if i == 2 else None,
|
312 |
uuid=state['uuid']
|
|
|
196 |
- GVHMR (https://github.com/zju3dv/GVHMR)
|
197 |
- HybrIK (https://github.com/jeffffffli/HybrIK)
|
198 |
- WHAM (https://github.com/yohanshin/WHAM)
|
|
|
|
|
|
|
199 |
|
200 |
All inferences are precomputed following the code in the associated GitHub repository.
|
201 |
Some post-inference modifications have been made to some models in order to make the comparison possible.
|
202 |
These modifications include:
|
203 |
* Adjusting height to a common ground
|
204 |
* Fixing the root depth of certain models, when depth was extremely jittery
|
205 |
+
* Fixing the root position of certain models, when no root position was available
|
206 |
|
207 |
All models use the SMPL body model to discard the influence of the body model on the comparison.
|
208 |
These choices were made without any intention to favor or harm any model.
|
|
|
|
|
209 |
All matchups are generated randomly, don't hesitate to rate the same videos multiple times as the matchups will probably be different!
|
210 |
|
211 |
---
|
|
|
303 |
async def process_rating(state, i, criteria):
|
304 |
return gr.update(value=await submit_rating(
|
305 |
criteria=criteria,
|
306 |
+
video=state['video'],
|
307 |
winner=state['modelLeft'] if i == 0 else state['modelRight'] if i == 2 else None,
|
308 |
loser=state['modelRight'] if i == 0 else state['modelLeft'] if i == 2 else None,
|
309 |
uuid=state['uuid']
|
utils.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import time
|
5 |
+
import asyncio
|
6 |
+
from utils.s3_utils import write_to_s3
|
7 |
+
from utils.data_utils import generate_leaderboard, generate_data
|
8 |
+
|
9 |
+
submit_lock = asyncio.Lock()
|
10 |
+
|
11 |
+
def update_ratings(R_win : int, R_lose : int, k : int = 32) -> Tuple[int, int]:
|
12 |
+
"""
|
13 |
+
Update the ratings of two players after a match.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
R_win (int): The rating of the winning player.
|
17 |
+
R_lose (int): The rating of the losing player.
|
18 |
+
k (int, optional): The k-factor. Defaults to 32.
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
Tuple[int, int]: The updated ratings of the winning and losing players.
|
22 |
+
"""
|
23 |
+
E_win = 1 / (1 + 10 ** ((R_lose - R_win) / 480))
|
24 |
+
E_lose = 1 / (1 + 10 ** ((R_win - R_lose) / 480))
|
25 |
+
return int(R_win + k * (1 - E_win)), int(R_lose + k * (0 - E_lose))
|
26 |
+
|
27 |
+
def generate_matchup(leaderboard : pd.DataFrame, beta : int) -> tuple[str, str]:
|
28 |
+
"""
|
29 |
+
Generate a pseudo-random matchup between two models.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
leaderboard (pd.DataFrame): The leaderboard of models
|
33 |
+
beta (int): The damping factor for the Elo update.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
model1 (str): The first model.
|
37 |
+
model2 (str): The second model.
|
38 |
+
"""
|
39 |
+
if leaderboard['Matches'].sum() == 0:
|
40 |
+
return np.random.choice(leaderboard.index, 2, replace=False)
|
41 |
+
weights = [np.exp(-leaderboard.at[model, 'Matches'] / beta) for model in leaderboard.index]
|
42 |
+
weights = weights / np.sum(weights) # Normalize weights
|
43 |
+
selected = np.random.choice(leaderboard.index, 2, replace=False, p=weights)
|
44 |
+
np.random.shuffle(selected)
|
45 |
+
model1, model2 = selected
|
46 |
+
return model1, model2
|
47 |
+
|
48 |
+
async def simulate(iter : int, beta : int, criteria : str) -> pd.DataFrame:
|
49 |
+
"""
|
50 |
+
Simulate matches between random models.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
iter (int): The number of matches to simulate.
|
54 |
+
beta (int): The damping factor for the Elo update.
|
55 |
+
criteria (str): The criteria for the rating.
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
leaderboard (pd.DataFrame): Updated leaderboard after simulation
|
59 |
+
"""
|
60 |
+
data = await generate_data()
|
61 |
+
|
62 |
+
leaderboard = await generate_leaderboard(criteria)
|
63 |
+
leaderboard.set_index('Model', inplace=True)
|
64 |
+
|
65 |
+
for _ in range(iter):
|
66 |
+
# Generate random matchups
|
67 |
+
timestamp = time.time()
|
68 |
+
model1, model2 = generate_matchup(leaderboard, beta)
|
69 |
+
R1, R2 = leaderboard.at[model1, 'Elo'], leaderboard.at[model2, 'Elo']
|
70 |
+
R1_new, R2_new = update_ratings(R1, R2)
|
71 |
+
|
72 |
+
# Update leaderboard
|
73 |
+
leaderboard.at[model1, 'Elo'], leaderboard.at[model2, 'Elo'] = R1_new, R2_new
|
74 |
+
leaderboard.at[model1, 'Wins'] += 1
|
75 |
+
leaderboard.at[model1, 'Matches'] += 1
|
76 |
+
leaderboard.at[model2, 'Matches'] += 1
|
77 |
+
leaderboard.at[model1, 'Win Rate'] = np.round(leaderboard.at[model1, 'Wins'] / leaderboard.at[model1, 'Matches'], 2)
|
78 |
+
leaderboard.at[model2, 'Win Rate'] = np.round(leaderboard.at[model2, 'Wins'] / leaderboard.at[model2, 'Matches'], 2)
|
79 |
+
|
80 |
+
# Save match data
|
81 |
+
data.loc[len(data)] = {
|
82 |
+
'Criteria': criteria,
|
83 |
+
'Model': model1,
|
84 |
+
'Opponent': model2,
|
85 |
+
'Won': True,
|
86 |
+
'Elo': leaderboard.at[model1, 'Elo'],
|
87 |
+
'Win Rate': leaderboard.at[model1, 'Win Rate'],
|
88 |
+
'Matches': leaderboard.at[model1, 'Matches'],
|
89 |
+
'Timestamp': timestamp,
|
90 |
+
'UUID': None
|
91 |
+
}
|
92 |
+
|
93 |
+
data.loc[len(data)] = {
|
94 |
+
'Criteria': criteria,
|
95 |
+
'Model': model2,
|
96 |
+
'Opponent': model1,
|
97 |
+
'Won': False,
|
98 |
+
'Elo': leaderboard.at[model2, 'Elo'],
|
99 |
+
'Win Rate': leaderboard.at[model2, 'Win Rate'],
|
100 |
+
'Matches': leaderboard.at[model2, 'Matches'],
|
101 |
+
'Timestamp': timestamp,
|
102 |
+
'UUID': None
|
103 |
+
}
|
104 |
+
|
105 |
+
leaderboard = leaderboard.sort_values('Elo', ascending=False).reset_index(drop=False)
|
106 |
+
|
107 |
+
await asyncio.gather(
|
108 |
+
write_to_s3(f'leaderboard_{criteria}.csv', leaderboard),
|
109 |
+
write_to_s3('data.csv', data)
|
110 |
+
)
|
111 |
+
|
112 |
+
return leaderboard
|
113 |
+
|
114 |
+
|
115 |
+
async def submit_rating(criteria : str, video : str, winner : str, loser : str, uuid : str) -> None:
|
116 |
+
"""
|
117 |
+
Submit a rating for a match.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
criteria (str): The criteria for the rating.
|
121 |
+
winner (str): The winning model.
|
122 |
+
loser (str): The losing model.
|
123 |
+
uuid (str): The UUID of the session.
|
124 |
+
"""
|
125 |
+
async with submit_lock:
|
126 |
+
data = await generate_data()
|
127 |
+
|
128 |
+
leaderboard = await generate_leaderboard(criteria)
|
129 |
+
leaderboard.set_index('Model', inplace=True)
|
130 |
+
|
131 |
+
if winner is None or loser is None or video is None:
|
132 |
+
return leaderboard
|
133 |
+
|
134 |
+
timestamp = time.time()
|
135 |
+
R_win, R_lose = leaderboard.at[winner, 'Elo'], leaderboard.at[loser, 'Elo']
|
136 |
+
R_win_new, R_lose_new = update_ratings(R_win, R_lose)
|
137 |
+
|
138 |
+
# Update leaderboard
|
139 |
+
leaderboard.loc[[winner, loser], 'Elo'] = [R_win_new, R_lose_new]
|
140 |
+
leaderboard.at[winner, 'Wins'] += 1
|
141 |
+
leaderboard.loc[[winner, loser], 'Matches'] += [1, 1]
|
142 |
+
leaderboard.loc[[winner, loser], 'Win Rate'] = (
|
143 |
+
leaderboard.loc[[winner, loser], 'Wins'] / leaderboard.loc[[winner, loser], 'Matches']
|
144 |
+
).apply(lambda x: round(x, 2))
|
145 |
+
|
146 |
+
# Save match data
|
147 |
+
data.loc[len(data)] = {
|
148 |
+
'Criteria': criteria,
|
149 |
+
'Model': winner,
|
150 |
+
'Opponent': loser,
|
151 |
+
'Won': True,
|
152 |
+
'Elo': leaderboard.at[winner, 'Elo'],
|
153 |
+
'Win Rate': leaderboard.at[winner, 'Win Rate'],
|
154 |
+
'Matches': leaderboard.at[winner, 'Matches'],
|
155 |
+
'Video': video,
|
156 |
+
'Timestamp': timestamp,
|
157 |
+
'UUID': uuid
|
158 |
+
}
|
159 |
+
|
160 |
+
data.loc[len(data)] = {
|
161 |
+
'Criteria': criteria,
|
162 |
+
'Model': loser,
|
163 |
+
'Opponent': winner,
|
164 |
+
'Won': False,
|
165 |
+
'Elo': leaderboard.at[loser, 'Elo'],
|
166 |
+
'Win Rate': leaderboard.at[loser, 'Win Rate'],
|
167 |
+
'Matches': leaderboard.at[loser, 'Matches'],
|
168 |
+
'Video': video,
|
169 |
+
'Timestamp': timestamp,
|
170 |
+
'UUID': uuid
|
171 |
+
}
|
172 |
+
|
173 |
+
leaderboard = leaderboard.sort_values('Elo', ascending=False).reset_index(drop=False)
|
174 |
+
await asyncio.gather(
|
175 |
+
write_to_s3(f'leaderboard_{criteria}.csv', leaderboard),
|
176 |
+
write_to_s3('data.csv', data)
|
177 |
+
)
|
178 |
+
return leaderboard
|