21spl commited on
Commit
3454130
·
verified ·
1 Parent(s): 4c92eeb

Update Gradio_UI.py

Browse files
Files changed (1) hide show
  1. Gradio_UI.py +27 -290
Gradio_UI.py CHANGED
@@ -1,296 +1,33 @@
1
- #!/usr/bin/env python
2
- # coding=utf-8
3
- # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
- import mimetypes
17
- import os
18
- import re
19
- import shutil
20
- from typing import Optional
21
-
22
- from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
23
- from smolagents.agents import ActionStep, MultiStepAgent
24
- from smolagents.memory import MemoryStep
25
- from smolagents.utils import _is_package_available
26
-
27
-
28
- def pull_messages_from_step(
29
- step_log: MemoryStep,
30
- ):
31
- """Extract ChatMessage objects from agent steps with proper nesting"""
32
- import gradio as gr
33
-
34
- if isinstance(step_log, ActionStep):
35
- # Output the step number
36
- step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else ""
37
- yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")
38
-
39
- # First yield the thought/reasoning from the LLM
40
- if hasattr(step_log, "model_output") and step_log.model_output is not None:
41
- # Clean up the LLM output
42
- model_output = step_log.model_output.strip()
43
- # Remove any trailing <end_code> and extra backticks, handling multiple possible formats
44
- model_output = re.sub(r"```\s*<end_code>", "```", model_output) # handles ```<end_code>
45
- model_output = re.sub(r"<end_code>\s*```", "```", model_output) # handles <end_code>```
46
- model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) # handles ```\n<end_code>
47
- model_output = model_output.strip()
48
- yield gr.ChatMessage(role="assistant", content=model_output)
49
-
50
- # For tool calls, create a parent message
51
- if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
52
- first_tool_call = step_log.tool_calls[0]
53
- used_code = first_tool_call.name == "python_interpreter"
54
- parent_id = f"call_{len(step_log.tool_calls)}"
55
-
56
- # Tool call becomes the parent message with timing info
57
- # First we will handle arguments based on type
58
- args = first_tool_call.arguments
59
- if isinstance(args, dict):
60
- content = str(args.get("answer", str(args)))
61
- else:
62
- content = str(args).strip()
63
-
64
- if used_code:
65
- # Clean up the content by removing any end code tags
66
- content = re.sub(r"```.*?\n", "", content) # Remove existing code blocks
67
- content = re.sub(r"\s*<end_code>\s*", "", content) # Remove end_code tags
68
- content = content.strip()
69
- if not content.startswith("```python"):
70
- content = f"```python\n{content}\n```"
71
-
72
- parent_message_tool = gr.ChatMessage(
73
- role="assistant",
74
- content=content,
75
- metadata={
76
- "title": f"🛠️ Used tool {first_tool_call.name}",
77
- "id": parent_id,
78
- "status": "pending",
79
- },
80
- )
81
- yield parent_message_tool
82
-
83
- # Nesting execution logs under the tool call if they exist
84
- if hasattr(step_log, "observations") and (
85
- step_log.observations is not None and step_log.observations.strip()
86
- ): # Only yield execution logs if there's actual content
87
- log_content = step_log.observations.strip()
88
- if log_content:
89
- log_content = re.sub(r"^Execution logs:\s*", "", log_content)
90
- yield gr.ChatMessage(
91
- role="assistant",
92
- content=f"{log_content}",
93
- metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"},
94
- )
95
-
96
- # Nesting any errors under the tool call
97
- if hasattr(step_log, "error") and step_log.error is not None:
98
- yield gr.ChatMessage(
99
- role="assistant",
100
- content=str(step_log.error),
101
- metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"},
102
- )
103
-
104
- # Update parent message metadata to done status without yielding a new message
105
- parent_message_tool.metadata["status"] = "done"
106
-
107
- # Handle standalone errors but not from tool calls
108
- elif hasattr(step_log, "error") and step_log.error is not None:
109
- yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"})
110
-
111
- # Calculate duration and token information
112
- step_footnote = f"{step_number}"
113
- if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
114
- token_str = (
115
- f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}"
116
- )
117
- step_footnote += token_str
118
- if hasattr(step_log, "duration"):
119
- step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
120
- step_footnote += step_duration
121
- step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
122
- yield gr.ChatMessage(role="assistant", content=f"{step_footnote}")
123
- yield gr.ChatMessage(role="assistant", content="-----")
124
-
125
-
126
- def stream_to_gradio(
127
- agent,
128
- task: str,
129
- reset_agent_memory: bool = False,
130
- additional_args: Optional[dict] = None,
131
- ):
132
- """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
133
- if not _is_package_available("gradio"):
134
- raise ModuleNotFoundError(
135
- "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
136
- )
137
- import gradio as gr
138
-
139
- total_input_tokens = 0
140
- total_output_tokens = 0
141
-
142
- for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
143
- # Track tokens if model provides them
144
- if hasattr(agent.model, "last_input_token_count"):
145
- total_input_tokens += agent.model.last_input_token_count
146
- total_output_tokens += agent.model.last_output_token_count
147
- if isinstance(step_log, ActionStep):
148
- step_log.input_token_count = agent.model.last_input_token_count
149
- step_log.output_token_count = agent.model.last_output_token_count
150
-
151
- for message in pull_messages_from_step(
152
- step_log,
153
- ):
154
- yield message
155
-
156
- final_answer = step_log # Last log is the run's final_answer
157
- final_answer = handle_agent_output_types(final_answer)
158
-
159
- if isinstance(final_answer, AgentText):
160
- yield gr.ChatMessage(
161
- role="assistant",
162
- content=f"**Final answer:**\n{final_answer.to_string()}\n",
163
- )
164
- elif isinstance(final_answer, AgentImage):
165
- yield gr.ChatMessage(
166
- role="assistant",
167
- content={"path": final_answer.to_string(), "mime_type": "image/png"},
168
- )
169
- elif isinstance(final_answer, AgentAudio):
170
- yield gr.ChatMessage(
171
- role="assistant",
172
- content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
173
- )
174
- else:
175
- yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
176
-
177
 
178
  class GradioUI:
179
- """A one-line interface to launch your agent in Gradio"""
180
-
181
- def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
182
- if not _is_package_available("gradio"):
183
- raise ModuleNotFoundError(
184
- "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
185
- )
186
  self.agent = agent
187
- self.file_upload_folder = file_upload_folder
188
- if self.file_upload_folder is not None:
189
- if not os.path.exists(file_upload_folder):
190
- os.mkdir(file_upload_folder)
191
-
192
- def interact_with_agent(self, prompt, messages):
193
- import gradio as gr
194
-
195
- messages.append(gr.ChatMessage(role="user", content=prompt))
196
- yield messages
197
- for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
198
- messages.append(msg)
199
- yield messages
200
- yield messages
201
-
202
- def upload_file(
203
- self,
204
- file,
205
- file_uploads_log,
206
- allowed_file_types=[
207
- "application/pdf",
208
- "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
209
- "text/plain",
210
- ],
211
- ):
212
- """
213
- Handle file uploads, default allowed types are .pdf, .docx, and .txt
214
- """
215
- import gradio as gr
216
-
217
- if file is None:
218
- return gr.Textbox("No file uploaded", visible=True), file_uploads_log
219
-
220
- try:
221
- mime_type, _ = mimetypes.guess_type(file.name)
222
- except Exception as e:
223
- return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
224
-
225
- if mime_type not in allowed_file_types:
226
- return gr.Textbox("File type disallowed", visible=True), file_uploads_log
227
-
228
- # Sanitize file name
229
- original_name = os.path.basename(file.name)
230
- sanitized_name = re.sub(
231
- r"[^\w\-.]", "_", original_name
232
- ) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
233
-
234
- type_to_ext = {}
235
- for ext, t in mimetypes.types_map.items():
236
- if t not in type_to_ext:
237
- type_to_ext[t] = ext
238
-
239
- # Ensure the extension correlates to the mime type
240
- sanitized_name = sanitized_name.split(".")[:-1]
241
- sanitized_name.append("" + type_to_ext[mime_type])
242
- sanitized_name = "".join(sanitized_name)
243
-
244
- # Save the uploaded file to the specified folder
245
- file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
246
- shutil.copy(file.name, file_path)
247
-
248
- return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
249
-
250
- def log_user_message(self, text_input, file_uploads_log):
251
- return (
252
- text_input
253
- + (
254
- f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
255
- if len(file_uploads_log) > 0
256
- else ""
257
- ),
258
- "",
259
- )
260
-
261
- def launch(self, **kwargs):
262
- import gradio as gr
263
-
264
- with gr.Blocks(fill_height=True) as demo:
265
- stored_messages = gr.State([])
266
- file_uploads_log = gr.State([])
267
- chatbot = gr.Chatbot(
268
- label="Agent",
269
- type="messages",
270
- avatar_images=(
271
- None,
272
- "https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/Alfred.png",
273
  ),
274
- resizeable=True,
275
- scale=1,
276
  )
277
- # If an upload folder is provided, enable the upload feature
278
- if self.file_upload_folder is not None:
279
- upload_file = gr.File(label="Upload a file")
280
- upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
281
- upload_file.change(
282
- self.upload_file,
283
- [upload_file, file_uploads_log],
284
- [upload_status, file_uploads_log],
285
- )
286
- text_input = gr.Textbox(lines=1, label="Chat Message")
287
- text_input.submit(
288
- self.log_user_message,
289
- [text_input, file_uploads_log],
290
- [stored_messages, text_input],
291
- ).then(self.interact_with_agent, [stored_messages, chatbot], [chatbot])
292
-
293
- demo.launch(debug=True, share=True, **kwargs)
294
 
295
-
296
- __all__ = ["stream_to_gradio", "GradioUI"]
 
1
+ import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  class GradioUI:
4
+ def __init__(self, agent):
 
 
 
 
 
 
5
  self.agent = agent
6
+ self.interface = self._create_interface()
7
+
8
+ def _create_interface(self):
9
+ with gr.Blocks(title="Landsat Image Fetcher") as demo:
10
+ gr.Markdown("# Landsat Image Fetcher")
11
+ gr.Markdown("Enter coordinates and a time range to fetch Landsat images from USGS.")
12
+ with gr.Row():
13
+ with gr.Column():
14
+ lat_min = gr.Number(label="Min Latitude", value=37.75)
15
+ lon_min = gr.Number(label="Min Longitude", value=-122.35)
16
+ lat_max = gr.Number(label="Max Latitude", value=37.85)
17
+ lon_max = gr.Number(label="Max Longitude", value=-122.25)
18
+ start_date = gr.Textbox(label="Start Date (YYYY-MM-DD)", value="2023-01-01")
19
+ end_date = gr.Textbox(label="End Date (YYYY-MM-DD)", value="2023-12-31")
20
+ submit_btn = gr.Button("Fetch Images")
21
+ with gr.Column():
22
+ output = gr.HTML(label="Download Links")
23
+ submit_btn.click(
24
+ fn=lambda lm, ln, lx, lo, sd, ed: self.agent.run(
25
+ f"fetch_landsat_image({lm}, {ln}, {lx}, {lo}, '{sd}', '{ed}')"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  ),
27
+ inputs=[lat_min, lon_min, lat_max, lon_max, start_date, end_date],
28
+ outputs=output
29
  )
30
+ return demo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
+ def launch(self, **kwargs):
33
+ self.interface.launch(**kwargs)