File size: 6,522 Bytes
27d707b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87a29e4
 
27d707b
 
87a29e4
27d707b
 
 
 
87a29e4
27d707b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d16ee9e
27d707b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
import cv2
import tempfile
from ultralytics import YOLOv10
import pandas as pd

df = pd.read_csv('image_class.csv')
df = df[['name', 'class']]
df.drop_duplicates(inplace=True)
# print(df)

def yolov10_inference(image, video, image_size, conf_threshold, iou_threshold):
    model = YOLOv10('./drug_yolov10.pt')
    # model = YOLOv10('./pills_yolov10.pt')
    if image:
        results = model.predict(source=image, imgsz=image_size, conf=conf_threshold, iou=iou_threshold)
        annotated_image = results[0].plot()
        # Print the detected objects' information (class, coordinates, and probability)
        box = results[0].boxes
        cls = [int(c) for c in box.cls.tolist()]
        cnf = [round(f,2) for f in box.conf.tolist()]
        clcf = '\n'.join([f'Class:{cls[i]} , Confidence:{cnf[i]*100}%' for i in range(len(cls))]) #list(zip(cls,cnf))
        name = '\n'.join([df[df['class']==n]['name'].item() for n in cls])
        # print(cls)
        # print(name)
        print(type(clcf))
        # print("Object type:", box.cls)
        # print("Coordinates:", box.xyxy)
        # print("Probability:", box.conf)
        # print('box.class data tyupe', type(box.cls.tolist()))
        return annotated_image[:, :, ::-1], None, clcf, name
    else:
        video_path = tempfile.mktemp(suffix=".webm")
        with open(video_path, "wb") as f:
            with open(video, "rb") as g:
                f.write(g.read())

        cap = cv2.VideoCapture(video_path)
        fps = cap.get(cv2.CAP_PROP_FPS)
        frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

        output_video_path = tempfile.mktemp(suffix=".webm")
        out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'vp80'), fps, (frame_width, frame_height))

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break

            results = model.predict(source=frame, imgsz=image_size, conf=conf_threshold, iou=iou_threshold)
            annotated_frame = results[0].plot()
            out.write(annotated_frame)

        cap.release()
        out.release()

        return None, output_video_path


def yolov10_inference_for_examples(image, image_size, conf_threshold, iou_threshold):
    annotated_image, _, output_class, output_name = yolov10_inference(image, None, image_size, conf_threshold, iou_threshold)
    return annotated_image#, None, output_class, output_name

def app():
    with gr.Blocks():
        with gr.Row():
            with gr.Column():
                image = gr.Image(type="pil", label="Image", visible=True)
                video = gr.Video(label="Video", visible=False)
                input_type = gr.Radio(
                    choices=["Image", "Video"],
                    value="Image",
                    label="Input Type",
                )
                image_size = gr.Slider(
                    label="Image Size",
                    minimum=0,
                    maximum=1280,
                    step=10,
                    value=640,
                )
                conf_threshold = gr.Slider(
                    label="Confidence Threshold",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    value=0.25,
                )
                iou_threshold = gr.Slider(
                    label="IOU Threshold",
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=0.6,
                )
                yolov10_infer = gr.Button(value="Detect Objects")
            
            with gr.Column():
                output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
                output_video = gr.Video(label="Annotated Video", visible=False)
                output_name = gr.Textbox(label='Predicted Drug Name')
                output_name.change(outputs=output_name)
                output_class = gr.Textbox(label='Predicted Class')
                output_class.change(outputs=output_class)

        def update_visibility(input_type):
            image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
            video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
            output_image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
            output_video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)

            return image, video, output_image, output_video

        input_type.change(
            fn=update_visibility,
            inputs=[input_type],
            outputs=[image, video, output_image, output_video],
        )

        def run_inference(image, video, image_size, conf_threshold, iou_threshold, input_type):
            if input_type == "Image":
                return yolov10_inference(image, None, image_size, conf_threshold, iou_threshold)
            else:
                return yolov10_inference(None, video, image_size, conf_threshold, iou_threshold)


        yolov10_infer.click(
            fn=run_inference,
            inputs=[image, video, image_size, conf_threshold, iou_threshold, input_type],
            outputs=[output_image, output_video, output_class, output_name],
        )

        gr.Examples(
            examples = [
            ['./RXBASE-600_00071-1014-68_NLMIMAGE10_5715ABFD.jpg', 280, 0.2, 0.6],
            ['./RXNAV-600_13668-0095-90_RXNAVIMAGE10_D145E8EF.jpg', 640, 0.2, 0.7],
            ['./RXBASE-600_00074-7126-13_NLMIMAGE10_C003606B.jpg', 640, 0.2, 0.8],
            ],
            fn=yolov10_inference_for_examples,
            inputs=[
                image,
                image_size,
                conf_threshold,
                iou_threshold,
            ],
            outputs=[output_image],
            cache_examples='lazy',
        )

gradio_app = gr.Blocks()
with gradio_app:
    gr.HTML(
        """
    <h1 style='text-align: center'>
    YOLOv10: Real-Time End-to-End Object Detection
    </h1>
    """)
    gr.HTML(
        """
        <h3 style='text-align: center'>
        <a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
        </h3>
        """)
    with gr.Row():
        with gr.Column():
            app()
if __name__ == '__main__':
    gradio_app.launch()