Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from wordllama import WordLlama
|
| 3 |
+
|
| 4 |
+
# Load the default WordLlama model
|
| 5 |
+
wl = WordLlama.load()
|
| 6 |
+
|
| 7 |
+
def calculate_similarity(sentence1, sentence2):
|
| 8 |
+
similarity_score = wl.similarity(sentence1, sentence2)
|
| 9 |
+
return similarity_score
|
| 10 |
+
|
| 11 |
+
def rank_documents(query, candidates):
|
| 12 |
+
ranked_docs = wl.rank(query, candidates)
|
| 13 |
+
return ranked_docs
|
| 14 |
+
|
| 15 |
+
def deduplicate_candidates(candidates, threshold):
|
| 16 |
+
deduplicated = wl.deduplicate(candidates, threshold)
|
| 17 |
+
return deduplicated
|
| 18 |
+
|
| 19 |
+
def filter_candidates(query, candidates, threshold):
|
| 20 |
+
filtered = wl.filter(query, candidates, threshold)
|
| 21 |
+
return filtered
|
| 22 |
+
|
| 23 |
+
def topk_candidates(query, candidates, k):
|
| 24 |
+
topk = wl.topk(query, candidates, k)
|
| 25 |
+
return topk
|
| 26 |
+
|
| 27 |
+
# Define the Gradio interface
|
| 28 |
+
def create_gradio_interface():
|
| 29 |
+
with gr.Blocks() as demo:
|
| 30 |
+
gr.Markdown("## WordLlama Gradio Demo")
|
| 31 |
+
|
| 32 |
+
with gr.Tab("Similarity"):
|
| 33 |
+
with gr.Row():
|
| 34 |
+
sentence1 = gr.Textbox(label="Sentence 1", placeholder="Enter the first sentence here...")
|
| 35 |
+
sentence2 = gr.Textbox(label="Sentence 2", placeholder="Enter the second sentence here...")
|
| 36 |
+
similarity_output = gr.Number(label="Similarity Score")
|
| 37 |
+
gr.Button("Calculate Similarity").click(
|
| 38 |
+
fn=calculate_similarity,
|
| 39 |
+
inputs=[sentence1, sentence2],
|
| 40 |
+
outputs=[similarity_output]
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
with gr.Tab("Rank Documents"):
|
| 44 |
+
query = gr.Textbox(label="Query", placeholder="Enter the query here...")
|
| 45 |
+
candidates = gr.Textbox(label="Candidates (comma separated)", placeholder="Enter candidate sentences here...")
|
| 46 |
+
ranked_docs_output = gr.Dataframe(headers=["Document", "Score"], datatype=["str", "float"])
|
| 47 |
+
gr.Button("Rank Documents").click(
|
| 48 |
+
fn=lambda q, c: rank_documents(q, c.split(',')),
|
| 49 |
+
inputs=[query, candidates],
|
| 50 |
+
outputs=[ranked_docs_output]
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
with gr.Tab("Deduplicate Candidates"):
|
| 54 |
+
candidates_dedup = gr.Textbox(label="Candidates (comma separated)", placeholder="Enter candidate sentences here...")
|
| 55 |
+
threshold_dedup = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, step=0.01, value=0.8)
|
| 56 |
+
deduplicated_output = gr.Textbox(label="Deduplicated Candidates")
|
| 57 |
+
gr.Button("Deduplicate").click(
|
| 58 |
+
fn=lambda c, t: deduplicate_candidates(c.split(','), t),
|
| 59 |
+
inputs=[candidates_dedup, threshold_dedup],
|
| 60 |
+
outputs=[deduplicated_output]
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
with gr.Tab("Filter Candidates"):
|
| 64 |
+
filter_query = gr.Textbox(label="Query", placeholder="Enter the query here...")
|
| 65 |
+
candidates_filter = gr.Textbox(label="Candidates (comma separated)", placeholder="Enter candidate sentences here...")
|
| 66 |
+
threshold_filter = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, step=0.01, value=0.3)
|
| 67 |
+
filtered_output = gr.Textbox(label="Filtered Candidates")
|
| 68 |
+
gr.Button("Filter Candidates").click(
|
| 69 |
+
fn=lambda q, c, t: filter_candidates(q, c.split(','), t),
|
| 70 |
+
inputs=[filter_query, candidates_filter, threshold_filter],
|
| 71 |
+
outputs=[filtered_output]
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
with gr.Tab("Top-k Candidates"):
|
| 75 |
+
topk_query = gr.Textbox(label="Query", placeholder="Enter the query here...")
|
| 76 |
+
candidates_topk = gr.Textbox(label="Candidates (comma separated)", placeholder="Enter candidate sentences here...")
|
| 77 |
+
k = gr.Slider(label="Top-k", minimum=1, maximum=10, step=1, value=3)
|
| 78 |
+
topk_output = gr.Textbox(label="Top-k Candidates")
|
| 79 |
+
gr.Button("Get Top-k Candidates").click(
|
| 80 |
+
fn=lambda q, c, k: topk_candidates(q, c.split(','), k),
|
| 81 |
+
inputs=[topk_query, candidates_topk, k],
|
| 82 |
+
outputs=[topk_output]
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
return demo
|
| 86 |
+
|
| 87 |
+
# Create and launch the Gradio interface
|
| 88 |
+
demo = create_gradio_interface()
|
| 89 |
+
demo.launch(debug = True)
|