Spaces:
Runtime error
Runtime error
File size: 5,518 Bytes
e39102f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import tempfile
import os
import shutil
import subprocess
from typing import Any
import PIL
import processing_utils # Import or define your custom processing utilities
def make_waveform(
audio: tuple[int, np.ndarray],
bg_color: str = "#f3f4f6",
bg_image: str | None = None,
fg_alpha: float = 0.75,
bars_color: str | tuple[str, str] = ("#fbbf24", "#ea580c"),
bar_count: int = 50,
bar_width: float = 0.6,
animate: bool = False,
) -> str:
if isinstance(audio, str):
audio_file = audio
audio = processing_utils.audio_from_file(audio)
else:
tmp_wav = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
processing_utils.audio_to_file(audio[0], audio[1], tmp_wav.name, format="wav")
audio_file = tmp_wav.name
if not os.path.isfile(audio_file):
raise ValueError("Audio file not found.")
ffmpeg = shutil.which("ffmpeg")
if not ffmpeg:
raise RuntimeError("ffmpeg not found.")
duration = round(len(audio[1]) / audio[0], 4)
def hex_to_rgb(hex_str):
return [int(hex_str[i : i + 2], 16) for i in range(1, 6, 2)]
def get_color_gradient(c1, c2, n):
if n < 1:
raise ValueError("Must have at least one stop in gradient")
c1_rgb = np.array(hex_to_rgb(c1)) / 255
c2_rgb = np.array(hex_to_rgb(c2)) / 255
mix_pcts = [x / (n - 1) for x in range(n)]
rgb_colors = [((1 - mix) * c1_rgb + (mix * c2_rgb)) for mix in mix_pcts]
return [
"#" + "".join(f"{int(round(val * 255)):02x}" for val in item)
for item in rgb_colors
]
samples = audio[1]
if len(samples.shape) > 1:
samples = np.mean(samples, 1)
bins_to_pad = bar_count - (len(samples) % bar_count)
samples = np.pad(samples, [(0, bins_to_pad)])
samples = np.reshape(samples, (bar_count, -1))
samples = np.abs(samples)
samples = np.max(samples, 1)
color = (
bars_color
if isinstance(bars_color, str)
else get_color_gradient(bars_color[0], bars_color[1], bar_count)
)
fig = plt.figure(figsize=(5, 1), dpi=200, frameon=False)
plt.axis("off")
plt.margins(x=0)
bar_alpha = fg_alpha if animate else 1.0
barcollection = plt.bar(
np.arange(0, bar_count),
samples * 2,
bottom=(-1 * samples),
width=bar_width,
color=color,
alpha=bar_alpha,
)
tmp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
savefig_kwargs: dict[str, Any] = {"bbox_inches": "tight"}
if bg_image is not None:
savefig_kwargs["transparent"] = True
else:
savefig_kwargs["facecolor"] = bg_color
plt.savefig(tmp_img.name, **savefig_kwargs)
if not animate:
waveform_img = PIL.Image.open(tmp_img.name)
waveform_img.save(tmp_img.name)
else:
def _animate(_):
for idx, b in enumerate(barcollection):
rand_height = np.random.uniform(0.8, 1.2)
b.set_height(samples[idx] * rand_height * 2)
b.set_y((-rand_height * samples)[idx])
frames = int(duration * 10)
anim = FuncAnimation(
fig,
_animate,
repeat=False,
blit=False,
frames=frames,
interval=100,
)
anim.save(tmp_img.name, writer="pillow", fps=10, codec="png", savefig_kwargs=savefig_kwargs)
output_mp4 = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
ffmpeg_cmd = [
ffmpeg,
"-loop",
"1",
"-i",
tmp_img.name,
"-i",
audio_file,
"-vf",
f"color=c=#FFFFFF77:s=1000x400[bar];[0][bar]overlay=-w+(w/{duration})*t:H-h:shortest=1",
"-t",
str(duration),
"-y",
output_mp4.name,
]
subprocess.check_call(ffmpeg_cmd)
return output_mp4.name
# Gradio app
def generate_waveform(audio, bg_color, fg_alpha, bars_color, bar_count, bar_width, animate):
try:
video_path = make_waveform(
audio=(audio[0], np.array(audio[1])),
bg_color=bg_color,
fg_alpha=fg_alpha,
bars_color=bars_color,
bar_count=bar_count,
bar_width=bar_width,
animate=animate
)
return video_path
except Exception as e:
return str(e)
with gr.Blocks() as demo:
gr.Markdown("### Audio Waveform Generator")
with gr.Row():
audio_input = gr.Audio(label="Upload Audio", source="upload", type="numpy")
video_output = gr.Video(label="Waveform Video")
with gr.Row():
bg_color = gr.ColorPicker(label="Background Color", value="#f3f4f6")
fg_alpha = gr.Slider(label="Foreground Opacity", minimum=0.1, maximum=1.0, value=0.75)
bar_count = gr.Slider(label="Number of Bars", minimum=10, maximum=100, step=1, value=50)
bar_width = gr.Slider(label="Bar Width", minimum=0.1, maximum=1.0, value=0.6)
bars_color = gr.ColorPicker(label="Bars Color", value="#fbbf24")
animate = gr.Checkbox(label="Animate", value=False)
generate_button = gr.Button("Generate Waveform")
generate_button.click(
generate_waveform,
inputs=[audio_input, bg_color, fg_alpha, bars_color, bar_count, bar_width, animate],
outputs=video_output
)
demo.launch(debug = True)
|