File size: 5,518 Bytes
e39102f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import tempfile
import os
import shutil
import subprocess
from typing import Any
import PIL
import processing_utils  # Import or define your custom processing utilities

def make_waveform(
    audio: tuple[int, np.ndarray],
    bg_color: str = "#f3f4f6",
    bg_image: str | None = None,
    fg_alpha: float = 0.75,
    bars_color: str | tuple[str, str] = ("#fbbf24", "#ea580c"),
    bar_count: int = 50,
    bar_width: float = 0.6,
    animate: bool = False,
) -> str:
    if isinstance(audio, str):
        audio_file = audio
        audio = processing_utils.audio_from_file(audio)
    else:
        tmp_wav = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
        processing_utils.audio_to_file(audio[0], audio[1], tmp_wav.name, format="wav")
        audio_file = tmp_wav.name

    if not os.path.isfile(audio_file):
        raise ValueError("Audio file not found.")

    ffmpeg = shutil.which("ffmpeg")
    if not ffmpeg:
        raise RuntimeError("ffmpeg not found.")

    duration = round(len(audio[1]) / audio[0], 4)

    def hex_to_rgb(hex_str):
        return [int(hex_str[i : i + 2], 16) for i in range(1, 6, 2)]

    def get_color_gradient(c1, c2, n):
        if n < 1:
            raise ValueError("Must have at least one stop in gradient")
        c1_rgb = np.array(hex_to_rgb(c1)) / 255
        c2_rgb = np.array(hex_to_rgb(c2)) / 255
        mix_pcts = [x / (n - 1) for x in range(n)]
        rgb_colors = [((1 - mix) * c1_rgb + (mix * c2_rgb)) for mix in mix_pcts]
        return [
            "#" + "".join(f"{int(round(val * 255)):02x}" for val in item)
            for item in rgb_colors
        ]

    samples = audio[1]
    if len(samples.shape) > 1:
        samples = np.mean(samples, 1)
    bins_to_pad = bar_count - (len(samples) % bar_count)
    samples = np.pad(samples, [(0, bins_to_pad)])
    samples = np.reshape(samples, (bar_count, -1))
    samples = np.abs(samples)
    samples = np.max(samples, 1)

    color = (
        bars_color
        if isinstance(bars_color, str)
        else get_color_gradient(bars_color[0], bars_color[1], bar_count)
    )

    fig = plt.figure(figsize=(5, 1), dpi=200, frameon=False)
    plt.axis("off")
    plt.margins(x=0)

    bar_alpha = fg_alpha if animate else 1.0
    barcollection = plt.bar(
        np.arange(0, bar_count),
        samples * 2,
        bottom=(-1 * samples),
        width=bar_width,
        color=color,
        alpha=bar_alpha,
    )

    tmp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
    savefig_kwargs: dict[str, Any] = {"bbox_inches": "tight"}
    if bg_image is not None:
        savefig_kwargs["transparent"] = True
    else:
        savefig_kwargs["facecolor"] = bg_color
    plt.savefig(tmp_img.name, **savefig_kwargs)

    if not animate:
        waveform_img = PIL.Image.open(tmp_img.name)
        waveform_img.save(tmp_img.name)
    else:
        def _animate(_):
            for idx, b in enumerate(barcollection):
                rand_height = np.random.uniform(0.8, 1.2)
                b.set_height(samples[idx] * rand_height * 2)
                b.set_y((-rand_height * samples)[idx])

        frames = int(duration * 10)
        anim = FuncAnimation(
            fig,
            _animate,
            repeat=False,
            blit=False,
            frames=frames,
            interval=100,
        )
        anim.save(tmp_img.name, writer="pillow", fps=10, codec="png", savefig_kwargs=savefig_kwargs)

    output_mp4 = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)

    ffmpeg_cmd = [
        ffmpeg,
        "-loop",
        "1",
        "-i",
        tmp_img.name,
        "-i",
        audio_file,
        "-vf",
        f"color=c=#FFFFFF77:s=1000x400[bar];[0][bar]overlay=-w+(w/{duration})*t:H-h:shortest=1",
        "-t",
        str(duration),
        "-y",
        output_mp4.name,
    ]

    subprocess.check_call(ffmpeg_cmd)
    return output_mp4.name

# Gradio app
def generate_waveform(audio, bg_color, fg_alpha, bars_color, bar_count, bar_width, animate):
    try:
        video_path = make_waveform(
            audio=(audio[0], np.array(audio[1])),
            bg_color=bg_color,
            fg_alpha=fg_alpha,
            bars_color=bars_color,
            bar_count=bar_count,
            bar_width=bar_width,
            animate=animate
        )
        return video_path
    except Exception as e:
        return str(e)

with gr.Blocks() as demo:
    gr.Markdown("### Audio Waveform Generator")
    
    with gr.Row():
        audio_input = gr.Audio(label="Upload Audio", source="upload", type="numpy")
        video_output = gr.Video(label="Waveform Video")

    with gr.Row():
        bg_color = gr.ColorPicker(label="Background Color", value="#f3f4f6")
        fg_alpha = gr.Slider(label="Foreground Opacity", minimum=0.1, maximum=1.0, value=0.75)
        bar_count = gr.Slider(label="Number of Bars", minimum=10, maximum=100, step=1, value=50)
        bar_width = gr.Slider(label="Bar Width", minimum=0.1, maximum=1.0, value=0.6)
        bars_color = gr.ColorPicker(label="Bars Color", value="#fbbf24")
        animate = gr.Checkbox(label="Animate", value=False)

    generate_button = gr.Button("Generate Waveform")
    generate_button.click(
        generate_waveform,
        inputs=[audio_input, bg_color, fg_alpha, bars_color, bar_count, bar_width, animate],
        outputs=video_output
    )

demo.launch(debug = True)