Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,429 +2,206 @@ import subprocess
|
|
2 |
subprocess.run(['sh', './spaces.sh'])
|
3 |
|
4 |
import os
|
5 |
-
|
6 |
os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
|
7 |
os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
|
8 |
-
|
9 |
-
'expandable_segments:True',
|
10 |
-
'pinned_use_background_threads:True' # Specific to pinned memory.
|
11 |
-
]
|
12 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = ','.join(alloc_conf_parts)
|
13 |
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
14 |
os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
|
15 |
|
16 |
import spaces
|
17 |
-
|
18 |
import gradio as gr
|
19 |
import numpy as np
|
20 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
import torch
|
|
|
23 |
torch.backends.cuda.matmul.allow_tf32 = False
|
24 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
25 |
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
26 |
torch.backends.cudnn.allow_tf32 = False
|
27 |
torch.backends.cudnn.deterministic = False
|
28 |
torch.backends.cudnn.benchmark = False
|
29 |
-
torch.backends.cuda.preferred_blas_library="cublas"
|
30 |
-
torch.backends.cuda.preferred_linalg_library="cusolver"
|
31 |
torch.set_float32_matmul_precision("highest")
|
32 |
|
33 |
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, AutoencoderKL
|
34 |
-
from transformers import CLIPTextModelWithProjection, T5EncoderModel
|
35 |
-
from transformers import CLIPTokenizer, T5TokenizerFast
|
36 |
-
|
37 |
-
import re
|
38 |
-
import paramiko
|
39 |
-
import urllib
|
40 |
-
import time
|
41 |
-
from image_gen_aux import UpscaleWithModel
|
42 |
-
from huggingface_hub import hf_hub_download
|
43 |
-
import datetime
|
44 |
from PIL import Image
|
|
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
hftoken = os.getenv("HF_AUTH_TOKEN")
|
51 |
-
|
52 |
-
import paramiko
|
53 |
-
import socket
|
54 |
-
import threading # NEW IMPORT
|
55 |
-
import queue # NEW IMPORT
|
56 |
-
|
57 |
-
FTP_HOST = 'noahcohn.com'
|
58 |
-
FTP_USER = 'ford442'
|
59 |
-
FTP_PASS = os.getenv("FTP_PASS")
|
60 |
-
FTP_DIR = 'img.noahcohn.com/stablediff/'
|
61 |
-
FTP_HOST_FALLBACK = '1ink.us'
|
62 |
-
FTP_DIR_FALLBACK = 'img.1ink.us/stablediff/'
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
-
|
67 |
-
def connect_worker(host, result_queue):
|
68 |
-
"""Tries to connect to a single host and puts the successful transport object into the queue."""
|
69 |
-
transport = None
|
70 |
try:
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
# If we reach here, the connection was successful.
|
77 |
-
# Put the result in the queue for the main thread to use.
|
78 |
-
print(f"✅ Connection to {host} succeeded first.")
|
79 |
-
result_queue.put(transport)
|
80 |
-
except (paramiko.SSHException, socket.timeout, EOFError) as e:
|
81 |
-
# This is an expected failure, just print a note.
|
82 |
-
print(f"ℹ️ Connection to {host} failed or was too slow: {e}")
|
83 |
-
if transport:
|
84 |
-
transport.close()
|
85 |
except Exception as e:
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
"""
|
96 |
-
hosts = [FTP_HOST]
|
97 |
-
if FTP_HOST_FALLBACK:
|
98 |
-
hosts.append(FTP_HOST_FALLBACK)
|
99 |
-
|
100 |
-
result_queue = queue.Queue()
|
101 |
-
threads = []
|
102 |
-
|
103 |
-
print(f"--> Racing connections to {hosts} for uploading {filename}...")
|
104 |
-
for host in hosts:
|
105 |
-
thread = threading.Thread(target=connect_worker, args=(host, result_queue))
|
106 |
-
thread.daemon = True
|
107 |
-
thread.start()
|
108 |
-
threads.append(thread)
|
109 |
try:
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
#
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
# 2. Select the correct destination directory based on the winning host.
|
117 |
-
# If the fallback directory isn't specified, it safely defaults to the primary directory.
|
118 |
-
if winning_host == FTP_HOST:
|
119 |
-
destination_directory = FTP_DIR
|
120 |
-
else:
|
121 |
-
destination_directory = FTP_DIR_FALLBACK if FTP_DIR_FALLBACK else FTP_DIR
|
122 |
-
print(f"--> Proceeding with upload to {winning_host} in directory {destination_directory}...")
|
123 |
-
# 3. Construct the full destination path using the selected directory.
|
124 |
-
sftp = paramiko.SFTPClient.from_transport(winning_transport)
|
125 |
-
destination_path = os.path.join(destination_directory, os.path.basename(filename))
|
126 |
-
sftp.put(filename, destination_path)
|
127 |
-
|
128 |
-
print(f"✅ Successfully uploaded {filename}.")
|
129 |
-
|
130 |
-
sftp.close()
|
131 |
-
winning_transport.close()
|
132 |
-
except queue.Empty:
|
133 |
-
print("❌ Critical Error: Neither FTP host responded in time.")
|
134 |
except Exception as e:
|
135 |
-
print(f"❌ An
|
136 |
|
|
|
137 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
138 |
|
139 |
-
#vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", use_safetensors=True, subfolder='vae',token=True)
|
140 |
-
vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, subfolder='vae', low_cpu_mem_usage=False, torch_dtype=torch.float32)
|
141 |
pipe = StableDiffusion3Pipeline.from_pretrained(
|
142 |
-
#"stabilityai # stable-diffusion-3.5-large",
|
143 |
"ford442/stable-diffusion-3.5-large-bf16",
|
144 |
trust_remote_code=True,
|
145 |
-
|
146 |
-
#vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
|
147 |
-
#scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
|
148 |
-
#text_encoder=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
|
149 |
-
# text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
|
150 |
-
#text_encoder_2=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
|
151 |
-
# text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
|
152 |
-
#text_encoder_3=None, #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
153 |
-
# text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
154 |
-
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
155 |
-
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
156 |
-
transformer=None,
|
157 |
-
#tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3", token=True),
|
158 |
-
#torch_dtype=torch.bfloat16,
|
159 |
use_safetensors=True,
|
|
|
160 |
)
|
161 |
-
#
|
162 |
-
|
163 |
-
#text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
|
164 |
-
ll_transformer=SD3Transformer2DModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='transformer').to(torch.device("cuda:0"), dtype=torch.bfloat16)
|
165 |
pipe.transformer=ll_transformer
|
166 |
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
|
167 |
-
|
168 |
-
#pipe.to(accelerator.device)
|
169 |
pipe.to(device=device, dtype=torch.bfloat16)
|
170 |
|
171 |
-
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(
|
172 |
|
173 |
MAX_SEED = np.iinfo(np.int32).max
|
174 |
-
|
175 |
MAX_IMAGE_SIZE = 4096
|
176 |
|
177 |
-
|
178 |
-
def infer_60(
|
179 |
-
prompt,
|
180 |
-
negative_prompt_1,
|
181 |
-
negative_prompt_2,
|
182 |
-
negative_prompt_3,
|
183 |
-
width,
|
184 |
-
height,
|
185 |
-
guidance_scale,
|
186 |
-
num_inference_steps,
|
187 |
-
progress=gr.Progress(track_tqdm=True),
|
188 |
-
):
|
189 |
-
seed = random.randint(0, MAX_SEED)
|
190 |
-
generator = torch.Generator(device='cuda').manual_seed(seed)
|
191 |
-
print('-- generating image --')
|
192 |
-
sd_image = pipe(
|
193 |
-
prompt=prompt,
|
194 |
-
prompt_2=prompt,
|
195 |
-
prompt_3=prompt,
|
196 |
-
negative_prompt=negative_prompt_1,
|
197 |
-
negative_prompt_2=negative_prompt_2,
|
198 |
-
negative_prompt_3=negative_prompt_3,
|
199 |
-
guidance_scale=guidance_scale,
|
200 |
-
num_inference_steps=num_inference_steps,
|
201 |
-
width=width,
|
202 |
-
height=height,
|
203 |
-
generator=generator,
|
204 |
-
max_sequence_length=512
|
205 |
-
).images[0]
|
206 |
-
print('-- got image --')
|
207 |
-
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
208 |
-
sd35_path = f"sd35ll_{timestamp}.png"
|
209 |
-
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
210 |
-
upload_to_ftp(sd35_path)
|
211 |
-
with torch.no_grad():
|
212 |
-
upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
213 |
-
upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
|
214 |
-
print('-- got upscaled image --')
|
215 |
-
downscale = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
|
216 |
-
upscale_path = f"sd35ll_upscale_{timestamp}.png"
|
217 |
-
downscale.save(upscale_path,optimize=False,compress_level=0)
|
218 |
-
upload_to_ftp(upscale_path)
|
219 |
-
return sd_image, prompt
|
220 |
-
|
221 |
-
@spaces.GPU(duration=100)
|
222 |
-
def infer_90(
|
223 |
-
prompt,
|
224 |
-
negative_prompt_1,
|
225 |
-
negative_prompt_2,
|
226 |
-
negative_prompt_3,
|
227 |
-
width,
|
228 |
-
height,
|
229 |
-
guidance_scale,
|
230 |
-
num_inference_steps,
|
231 |
-
progress=gr.Progress(track_tqdm=True),
|
232 |
-
):
|
233 |
-
seed = random.randint(0, MAX_SEED)
|
234 |
-
generator = torch.Generator(device='cuda').manual_seed(seed)
|
235 |
-
print('-- generating image --')
|
236 |
-
sd_image = pipe(
|
237 |
-
prompt=prompt,
|
238 |
-
prompt_2=prompt,
|
239 |
-
prompt_3=prompt,
|
240 |
-
negative_prompt=negative_prompt_1,
|
241 |
-
negative_prompt_2=negative_prompt_2,
|
242 |
-
negative_prompt_3=negative_prompt_3,
|
243 |
-
guidance_scale=guidance_scale,
|
244 |
-
num_inference_steps=num_inference_steps,
|
245 |
-
width=width,
|
246 |
-
height=height,
|
247 |
-
generator=generator,
|
248 |
-
max_sequence_length=512
|
249 |
-
).images[0]
|
250 |
-
print('-- got image --')
|
251 |
-
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
252 |
-
sd35_path = f"sd35ll_{timestamp}.png"
|
253 |
-
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
254 |
-
upload_to_ftp(sd35_path)
|
255 |
-
with torch.no_grad():
|
256 |
-
upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
257 |
-
upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
|
258 |
-
print('-- got upscaled image --')
|
259 |
-
downscale = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
|
260 |
-
upscale_path = f"sd35ll_upscale_{timestamp}.png"
|
261 |
-
downscale.save(upscale_path,optimize=False,compress_level=0)
|
262 |
-
upload_to_ftp(upscale_path)
|
263 |
-
return sd_image, prompt
|
264 |
-
|
265 |
@spaces.GPU(duration=120)
|
266 |
-
def
|
267 |
-
|
268 |
-
negative_prompt_1,
|
269 |
-
negative_prompt_2,
|
270 |
-
negative_prompt_3,
|
271 |
-
width,
|
272 |
-
height,
|
273 |
-
guidance_scale,
|
274 |
-
num_inference_steps,
|
275 |
-
progress=gr.Progress(track_tqdm=True),
|
276 |
-
):
|
277 |
seed = random.randint(0, MAX_SEED)
|
278 |
-
generator = torch.Generator(device=
|
|
|
279 |
print('-- generating image --')
|
280 |
sd_image = pipe(
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
negative_prompt_3=negative_prompt_3,
|
287 |
-
guidance_scale=guidance_scale,
|
288 |
-
num_inference_steps=num_inference_steps,
|
289 |
-
width=width,
|
290 |
-
height=height,
|
291 |
-
generator=generator,
|
292 |
-
max_sequence_length=512
|
293 |
).images[0]
|
294 |
print('-- got image --')
|
295 |
-
|
296 |
-
sd35_path = f"sd35ll_{timestamp}.png"
|
297 |
-
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
298 |
-
upload_to_ftp(sd35_path)
|
299 |
with torch.no_grad():
|
300 |
upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
301 |
upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
|
302 |
print('-- got upscaled image --')
|
303 |
-
|
304 |
-
upscale_path = f"sd35ll_upscale_{timestamp}.png"
|
305 |
-
downscale.save(upscale_path,optimize=False,compress_level=0)
|
306 |
-
upload_to_ftp(upscale_path)
|
307 |
-
return sd_image, prompt
|
308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
css = """
|
310 |
#col-container {margin: 0 auto;max-width: 640px;}
|
311 |
body{background-color: blue;}
|
312 |
"""
|
313 |
|
314 |
-
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
315 |
with gr.Column(elem_id="col-container"):
|
316 |
gr.Markdown(" # StableDiffusion 3.5 Large with UltraReal lora test")
|
317 |
-
expanded_prompt_output = gr.Textbox(label="Prompt", lines=1)
|
318 |
with gr.Row():
|
319 |
prompt = gr.Text(
|
320 |
-
label="Prompt",
|
321 |
-
|
322 |
-
max_lines=1,
|
323 |
-
placeholder="Enter your prompt",
|
324 |
-
container=False,
|
325 |
)
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
result = gr.Image(label="Result", show_label=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
with gr.Accordion("Advanced Settings", open=True):
|
331 |
-
negative_prompt_1 = gr.Text(
|
332 |
-
|
333 |
-
|
334 |
-
placeholder="Enter a negative prompt",
|
335 |
-
visible=True,
|
336 |
-
value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition"
|
337 |
-
)
|
338 |
-
negative_prompt_2 = gr.Text(
|
339 |
-
label="Negative prompt 2",
|
340 |
-
max_lines=1,
|
341 |
-
placeholder="Enter a second negative prompt",
|
342 |
-
visible=True,
|
343 |
-
value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)"
|
344 |
-
)
|
345 |
-
negative_prompt_3 = gr.Text(
|
346 |
-
label="Negative prompt 3",
|
347 |
-
max_lines=1,
|
348 |
-
placeholder="Enter a third negative prompt",
|
349 |
-
visible=True,
|
350 |
-
value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)"
|
351 |
-
)
|
352 |
-
num_iterations = gr.Number(
|
353 |
-
value=1000,
|
354 |
-
label="Number of Iterations")
|
355 |
with gr.Row():
|
356 |
-
width = gr.Slider(
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
num_inference_steps = gr.Slider(
|
378 |
-
label="Number of inference steps",
|
379 |
-
minimum=1,
|
380 |
-
maximum=500,
|
381 |
-
step=1,
|
382 |
-
value=100,
|
383 |
-
)
|
384 |
-
gr.on(
|
385 |
-
triggers=[run_button_60.click, prompt.submit],
|
386 |
-
fn=infer_60,
|
387 |
-
inputs=[
|
388 |
-
prompt,
|
389 |
-
negative_prompt_1,
|
390 |
-
negative_prompt_2,
|
391 |
-
negative_prompt_3,
|
392 |
-
width,
|
393 |
-
height,
|
394 |
-
guidance_scale,
|
395 |
-
num_inference_steps,
|
396 |
-
],
|
397 |
-
outputs=[result, expanded_prompt_output],
|
398 |
-
)
|
399 |
-
gr.on(
|
400 |
-
triggers=[run_button_90.click, prompt.submit],
|
401 |
-
fn=infer_90,
|
402 |
-
inputs=[
|
403 |
-
prompt,
|
404 |
-
negative_prompt_1,
|
405 |
-
negative_prompt_2,
|
406 |
-
negative_prompt_3,
|
407 |
-
width,
|
408 |
-
height,
|
409 |
-
guidance_scale,
|
410 |
-
num_inference_steps,
|
411 |
-
],
|
412 |
-
outputs=[result, expanded_prompt_output],
|
413 |
-
)
|
414 |
-
gr.on(
|
415 |
-
triggers=[run_button_110.click, prompt.submit],
|
416 |
-
fn=infer_110,
|
417 |
-
inputs=[
|
418 |
-
prompt,
|
419 |
-
negative_prompt_1,
|
420 |
-
negative_prompt_2,
|
421 |
-
negative_prompt_3,
|
422 |
-
width,
|
423 |
-
height,
|
424 |
-
guidance_scale,
|
425 |
-
num_inference_steps,
|
426 |
-
],
|
427 |
-
outputs=[result, expanded_prompt_output],
|
428 |
)
|
429 |
|
430 |
if __name__ == "__main__":
|
|
|
2 |
subprocess.run(['sh', './spaces.sh'])
|
3 |
|
4 |
import os
|
5 |
+
# Environment variable setup
|
6 |
os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
|
7 |
os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
|
8 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True,pinned_use_background_threads:True'
|
|
|
|
|
|
|
|
|
9 |
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
10 |
os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
|
11 |
|
12 |
import spaces
|
|
|
13 |
import gradio as gr
|
14 |
import numpy as np
|
15 |
import random
|
16 |
+
import datetime
|
17 |
+
import threading
|
18 |
+
import io
|
19 |
+
|
20 |
+
# --- New GCS Imports ---
|
21 |
+
from google.oauth2 import service_account
|
22 |
+
from google.cloud import storage
|
23 |
|
24 |
import torch
|
25 |
+
# Torch performance settings
|
26 |
torch.backends.cuda.matmul.allow_tf32 = False
|
27 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
28 |
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
29 |
torch.backends.cudnn.allow_tf32 = False
|
30 |
torch.backends.cudnn.deterministic = False
|
31 |
torch.backends.cudnn.benchmark = False
|
|
|
|
|
32 |
torch.set_float32_matmul_precision("highest")
|
33 |
|
34 |
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, AutoencoderKL
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
from PIL import Image
|
36 |
+
from image_gen_aux import UpscaleWithModel
|
37 |
|
38 |
+
# --- GCS Configuration ---
|
39 |
+
# Make sure to set these secrets in your Hugging Face Space settings
|
40 |
+
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
|
41 |
+
GCS_SA_KEY = os.getenv("GCS_SA_KEY") # The full JSON key content as a string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# Initialize GCS client if credentials are available
|
44 |
+
gcs_client = None
|
45 |
+
if GCS_SA_KEY and GCS_BUCKET_NAME:
|
|
|
|
|
|
|
46 |
try:
|
47 |
+
credentials_info = eval(GCS_SA_KEY) # Using eval is safe here if you trust the secret source
|
48 |
+
credentials = service_account.Credentials.from_service_account_info(credentials_info)
|
49 |
+
gcs_client = storage.Client(credentials=credentials)
|
50 |
+
print("✅ GCS Client initialized successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
except Exception as e:
|
52 |
+
print(f"❌ Failed to initialize GCS client: {e}")
|
53 |
+
|
54 |
+
# --- New GCS Upload Function (runs on CPU) ---
|
55 |
+
def upload_to_gcs(image_object, filename):
|
56 |
+
"""Uploads a PIL Image object to GCS from memory."""
|
57 |
+
if not gcs_client:
|
58 |
+
print("⚠️ GCS client not initialized. Skipping upload.")
|
59 |
+
return
|
60 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
try:
|
62 |
+
print(f"--> Starting GCS upload for {filename}...")
|
63 |
+
bucket = gcs_client.bucket(GCS_BUCKET_NAME)
|
64 |
+
blob = bucket.blob(f"stablediff/{filename}")
|
65 |
+
|
66 |
+
# Convert PIL image to bytes stream
|
67 |
+
img_byte_arr = io.BytesIO()
|
68 |
+
image_object.save(img_byte_arr, format='PNG', optimize=False, compress_level=0)
|
69 |
+
img_byte_arr = img_byte_arr.getvalue()
|
70 |
|
71 |
+
# Upload from the in-memory string
|
72 |
+
blob.upload_from_string(img_byte_arr, content_type='image/png')
|
73 |
+
print(f"✅ Successfully uploaded {filename} to GCS.")
|
74 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
except Exception as e:
|
76 |
+
print(f"❌ An error occurred during GCS upload: {e}")
|
77 |
|
78 |
+
# --- Model Loading ---
|
79 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
80 |
+
hftoken = os.getenv("HF_AUTH_TOKEN")
|
81 |
|
|
|
|
|
82 |
pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
|
83 |
"ford442/stable-diffusion-3.5-large-bf16",
|
84 |
trust_remote_code=True,
|
85 |
+
transformer=None, # Load transformer separately
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
use_safetensors=True,
|
87 |
+
# token=hftoken
|
88 |
)
|
89 |
+
# Load transformer separately and move to device with specified dtype
|
90 |
+
ll_transformer=SD3Transformer2DModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='transformer', token=hftoken).to(device, dtype=torch.bfloat16)
|
|
|
|
|
91 |
pipe.transformer=ll_transformer
|
92 |
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
|
|
|
|
|
93 |
pipe.to(device=device, dtype=torch.bfloat16)
|
94 |
|
95 |
+
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(device)
|
96 |
|
97 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
98 |
MAX_IMAGE_SIZE = 4096
|
99 |
|
100 |
+
# --- Refactored GPU Inference Function ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
@spaces.GPU(duration=120)
|
102 |
+
def generate_images(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)):
|
103 |
+
"""Generates the main image and its upscaled version on the GPU."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
seed = random.randint(0, MAX_SEED)
|
105 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
106 |
+
|
107 |
print('-- generating image --')
|
108 |
sd_image = pipe(
|
109 |
+
prompt=prompt, prompt_2=prompt, prompt_3=prompt,
|
110 |
+
negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3,
|
111 |
+
guidance_scale=guidance, num_inference_steps=steps,
|
112 |
+
width=width, height=height, generator=generator,
|
113 |
+
max_sequence_length=512
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
).images[0]
|
115 |
print('-- got image --')
|
116 |
+
|
|
|
|
|
|
|
117 |
with torch.no_grad():
|
118 |
upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
119 |
upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
|
120 |
print('-- got upscaled image --')
|
121 |
+
downscaled_upscale = upscale2.resize((upscale2.width // 4, upscale2.height // 4), Image.LANCZOS)
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
return sd_image, downscaled_upscale, prompt
|
124 |
+
|
125 |
+
# --- Main Gradio Handler (runs on CPU) ---
|
126 |
+
def run_inference_and_upload(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)):
|
127 |
+
"""
|
128 |
+
Orchestrates the process: calls the GPU function, then handles the upload if consented.
|
129 |
+
"""
|
130 |
+
# 1. Call the GPU-bound function to get the images
|
131 |
+
sd_image, upscaled_image, expanded_prompt = generate_images(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress)
|
132 |
+
|
133 |
+
# 2. If user consented, start uploads in background threads
|
134 |
+
if save_consent:
|
135 |
+
print("✅ User consented to save. Preparing uploads...")
|
136 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
137 |
+
sd_filename = f"sd35ll_{timestamp}.png"
|
138 |
+
upscale_filename = f"sd35ll_upscale_{timestamp}.png"
|
139 |
+
|
140 |
+
# Create and start threads for each upload
|
141 |
+
sd_thread = threading.Thread(target=upload_to_gcs, args=(sd_image, sd_filename))
|
142 |
+
upscale_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_image, upscale_filename))
|
143 |
+
|
144 |
+
sd_thread.start()
|
145 |
+
upscale_thread.start()
|
146 |
+
else:
|
147 |
+
print("ℹ️ User did not consent to save. Skipping upload.")
|
148 |
+
|
149 |
+
# 3. Return the primary image to the UI immediately
|
150 |
+
return sd_image, expanded_prompt
|
151 |
+
|
152 |
+
# --- Gradio UI Definition ---
|
153 |
css = """
|
154 |
#col-container {margin: 0 auto;max-width: 640px;}
|
155 |
body{background-color: blue;}
|
156 |
"""
|
157 |
|
158 |
+
with gr.Blocks(theme=gr.themes.Origin(), css=css) as demo:
|
159 |
with gr.Column(elem_id="col-container"):
|
160 |
gr.Markdown(" # StableDiffusion 3.5 Large with UltraReal lora test")
|
161 |
+
expanded_prompt_output = gr.Textbox(label="Prompt", lines=1)
|
162 |
with gr.Row():
|
163 |
prompt = gr.Text(
|
164 |
+
label="Prompt", show_label=False, max_lines=1,
|
165 |
+
placeholder="Enter your prompt", container=False,
|
|
|
|
|
|
|
166 |
)
|
167 |
+
# Use a single run button for simplicity or keep multiple if durations are critical
|
168 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
169 |
+
|
170 |
+
result = gr.Image(label="Result", show_label=False, type="pil")
|
171 |
+
|
172 |
+
# --- New Consent Checkbox ---
|
173 |
+
save_consent_checkbox = gr.Checkbox(
|
174 |
+
label="✅ Anonymously upload result to a public gallery",
|
175 |
+
value=False, # Default to not uploading
|
176 |
+
info="Check this box to help us by contributing your image."
|
177 |
+
)
|
178 |
+
|
179 |
with gr.Accordion("Advanced Settings", open=True):
|
180 |
+
negative_prompt_1 = gr.Text(label="Negative prompt 1", max_lines=1, placeholder="Enter a negative prompt", value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition")
|
181 |
+
negative_prompt_2 = gr.Text(label="Negative prompt 2", max_lines=1, placeholder="Enter a second negative prompt", value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)")
|
182 |
+
negative_prompt_3 = gr.Text(label="Negative prompt 3", max_lines=1, placeholder="Enter a third negative prompt", value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
with gr.Row():
|
184 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768)
|
185 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768)
|
186 |
+
with gr.Row():
|
187 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=4.2)
|
188 |
+
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=150, step=1, value=60)
|
189 |
+
|
190 |
+
# Connect the button to the main handler function
|
191 |
+
run_button.click(
|
192 |
+
fn=run_inference_and_upload,
|
193 |
+
inputs=[
|
194 |
+
prompt,
|
195 |
+
negative_prompt_1,
|
196 |
+
negative_prompt_2,
|
197 |
+
negative_prompt_3,
|
198 |
+
width,
|
199 |
+
height,
|
200 |
+
guidance_scale,
|
201 |
+
num_inference_steps,
|
202 |
+
save_consent_checkbox # Pass the checkbox value
|
203 |
+
],
|
204 |
+
outputs=[result, expanded_prompt_output],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
)
|
206 |
|
207 |
if __name__ == "__main__":
|