1inkusFace commited on
Commit
1813431
·
verified ·
1 Parent(s): 458413b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -291,12 +291,12 @@ def generate_images_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width,
291
  upscale_2 = upscaler_2(upscale_1, tiling=True, tile_width=256, tile_height=256)
292
  print('-- got 4K 16-bit upscaled PIL image --')
293
 
294
- downscaled_upscale = upscale_2.resize((upscale2.width // 8, upscale2.height // 8), Image.LANCZOS)
295
 
296
  torch.cuda.empty_cache()
297
 
298
  # 6. Convert the 4K 16-bit PIL back to a float32 tensor
299
- upscaled_16bit_numpy = np.array(downscaled_upscale)
300
  upscaled_srgb_tensor = torch.from_numpy(upscaled_16bit_numpy).permute(2, 0, 1).unsqueeze(0).to(device, dtype=torch.float32) / 65535.0
301
 
302
  # 7. Create 10-bit HDR AVIF bytes from the 4K tensor (for GCS)
@@ -353,12 +353,12 @@ def generate_images_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width,
353
  upscale_2 = upscaler_2(upscale_1, tiling=True, tile_width=256, tile_height=256)
354
  print('-- got 4K 16-bit upscaled PIL image --')
355
 
356
- downscaled_upscale = upscale_2.resize((upscale2.width // 8, upscale2.height // 8), Image.LANCZOS)
357
 
358
  torch.cuda.empty_cache()
359
 
360
  # 6. Convert the 4K 16-bit PIL back to a float32 tensor
361
- upscaled_16bit_numpy = np.array(downscaled_upscale)
362
  upscaled_srgb_tensor = torch.from_numpy(upscaled_16bit_numpy).permute(2, 0, 1).unsqueeze(0).to(device, dtype=torch.float32) / 65535.0
363
 
364
  # 7. Create 10-bit HDR AVIF bytes from the 4K tensor (for GCS)
@@ -408,19 +408,19 @@ def generate_images_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width,
408
  sd_image_pil_16bit = Image.fromarray(srgb_numpy_16bit, mode='RGB')
409
  print('-- got 16-bit PIL image for upscaling --')
410
 
411
- # 5. Run the 16-bit upscaling (4x)
412
  # We feed the high-precision 16-bit PIL image to the upscaler
413
  with torch.no_grad():
414
  upscale_1 = upscaler_2(sd_image_pil_16bit, tiling=True, tile_width=256, tile_height=256)
415
  upscale_2 = upscaler_2(upscale_1, tiling=True, tile_width=256, tile_height=256)
416
  print('-- got 4K 16-bit upscaled PIL image --')
417
 
418
- downscaled_upscale = upscale_2.resize((upscale2.width // 8, upscale2.height // 8), Image.LANCZOS)
419
 
420
  torch.cuda.empty_cache()
421
 
422
  # 6. Convert the 4K 16-bit PIL back to a float32 tensor
423
- upscaled_16bit_numpy = np.array(downscaled_upscale)
424
  upscaled_srgb_tensor = torch.from_numpy(upscaled_16bit_numpy).permute(2, 0, 1).unsqueeze(0).to(device, dtype=torch.float32) / 65535.0
425
 
426
  # 7. Create 10-bit HDR AVIF bytes from the 4K tensor (for GCS)
 
291
  upscale_2 = upscaler_2(upscale_1, tiling=True, tile_width=256, tile_height=256)
292
  print('-- got 4K 16-bit upscaled PIL image --')
293
 
294
+ #downscaled_upscale = upscale_2.resize((upscale_2.width // 8, upscale_2.height // 8), Image.LANCZOS)
295
 
296
  torch.cuda.empty_cache()
297
 
298
  # 6. Convert the 4K 16-bit PIL back to a float32 tensor
299
+ upscaled_16bit_numpy = np.array(upscale_2)
300
  upscaled_srgb_tensor = torch.from_numpy(upscaled_16bit_numpy).permute(2, 0, 1).unsqueeze(0).to(device, dtype=torch.float32) / 65535.0
301
 
302
  # 7. Create 10-bit HDR AVIF bytes from the 4K tensor (for GCS)
 
353
  upscale_2 = upscaler_2(upscale_1, tiling=True, tile_width=256, tile_height=256)
354
  print('-- got 4K 16-bit upscaled PIL image --')
355
 
356
+ #downscaled_upscale = upscale_2.resize((upscale_2.width // 8, upscale_2.height // 8), Image.LANCZOS)
357
 
358
  torch.cuda.empty_cache()
359
 
360
  # 6. Convert the 4K 16-bit PIL back to a float32 tensor
361
+ upscaled_16bit_numpy = np.array(upscale_2)
362
  upscaled_srgb_tensor = torch.from_numpy(upscaled_16bit_numpy).permute(2, 0, 1).unsqueeze(0).to(device, dtype=torch.float32) / 65535.0
363
 
364
  # 7. Create 10-bit HDR AVIF bytes from the 4K tensor (for GCS)
 
408
  sd_image_pil_16bit = Image.fromarray(srgb_numpy_16bit, mode='RGB')
409
  print('-- got 16-bit PIL image for upscaling --')
410
 
411
+ # 5. Run the 16-bit upscaling (4x)
412
  # We feed the high-precision 16-bit PIL image to the upscaler
413
  with torch.no_grad():
414
  upscale_1 = upscaler_2(sd_image_pil_16bit, tiling=True, tile_width=256, tile_height=256)
415
  upscale_2 = upscaler_2(upscale_1, tiling=True, tile_width=256, tile_height=256)
416
  print('-- got 4K 16-bit upscaled PIL image --')
417
 
418
+ #downscaled_upscale = upscale_2.resize((upscale_2.width // 8, upscale_2.height // 8), Image.LANCZOS)
419
 
420
  torch.cuda.empty_cache()
421
 
422
  # 6. Convert the 4K 16-bit PIL back to a float32 tensor
423
+ upscaled_16bit_numpy = np.array(upscale_2)
424
  upscaled_srgb_tensor = torch.from_numpy(upscaled_16bit_numpy).permute(2, 0, 1).unsqueeze(0).to(device, dtype=torch.float32) / 65535.0
425
 
426
  # 7. Create 10-bit HDR AVIF bytes from the 4K tensor (for GCS)