Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -69,8 +69,11 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
69 |
vae=None,
|
70 |
#vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
|
71 |
#scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
|
|
|
72 |
# text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
|
|
|
73 |
# text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
|
|
|
74 |
# text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
75 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
76 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
@@ -102,6 +105,9 @@ def infer_30(
|
|
102 |
num_inference_steps,
|
103 |
progress=gr.Progress(track_tqdm=True),
|
104 |
):
|
|
|
|
|
|
|
105 |
torch.set_float32_matmul_precision("highest")
|
106 |
seed = random.randint(0, MAX_SEED)
|
107 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
@@ -150,6 +156,9 @@ def infer_60(
|
|
150 |
num_inference_steps,
|
151 |
progress=gr.Progress(track_tqdm=True),
|
152 |
):
|
|
|
|
|
|
|
153 |
torch.set_float32_matmul_precision("highest")
|
154 |
seed = random.randint(0, MAX_SEED)
|
155 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
@@ -196,6 +205,9 @@ def infer_90(
|
|
196 |
num_inference_steps,
|
197 |
progress=gr.Progress(track_tqdm=True),
|
198 |
):
|
|
|
|
|
|
|
199 |
torch.set_float32_matmul_precision("highest")
|
200 |
seed = random.randint(0, MAX_SEED)
|
201 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
69 |
vae=None,
|
70 |
#vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
|
71 |
#scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
|
72 |
+
text_encoder=None #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
|
73 |
# text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
|
74 |
+
text_encoder_2=None #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
|
75 |
# text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
|
76 |
+
text_encoder_3=None #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
77 |
# text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
78 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
79 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
|
|
105 |
num_inference_steps,
|
106 |
progress=gr.Progress(track_tqdm=True),
|
107 |
):
|
108 |
+
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
109 |
+
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
110 |
+
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
111 |
torch.set_float32_matmul_precision("highest")
|
112 |
seed = random.randint(0, MAX_SEED)
|
113 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
156 |
num_inference_steps,
|
157 |
progress=gr.Progress(track_tqdm=True),
|
158 |
):
|
159 |
+
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
160 |
+
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
161 |
+
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
162 |
torch.set_float32_matmul_precision("highest")
|
163 |
seed = random.randint(0, MAX_SEED)
|
164 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
205 |
num_inference_steps,
|
206 |
progress=gr.Progress(track_tqdm=True),
|
207 |
):
|
208 |
+
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
209 |
+
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
210 |
+
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
211 |
torch.set_float32_matmul_precision("highest")
|
212 |
seed = random.randint(0, MAX_SEED)
|
213 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|