1inkusFace commited on
Commit
d7dfa1e
·
verified ·
1 Parent(s): be81574

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -1
app.py CHANGED
@@ -38,7 +38,8 @@ torch.backends.cudnn.benchmark = False
38
 
39
  hftoken = os.getenv("HF_TOKEN")
40
 
41
- image_encoder_path = "google/siglip-so400m-patch14-384"
 
42
  ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin")
43
  model_path = 'ford442/stable-diffusion-3.5-large-bf16'
44
 
@@ -100,6 +101,7 @@ def infer(
100
  num_inference_steps,
101
  latent_file, # Add latents file input
102
  ip_scale,
 
103
  progress=gr.Progress(track_tqdm=True),
104
  ):
105
  upscaler_2.to(torch.device('cpu'))
@@ -226,6 +228,10 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
226
  result = gr.Image(label="Result", show_label=False)
227
  with gr.Accordion("Advanced Settings", open=True):
228
  latent_file = gr.File(label="Image File (optional)") # Add latents file input
 
 
 
 
229
  ip_scale = gr.Slider(
230
  label="Image Prompt Scale",
231
  minimum=0.0,
@@ -298,6 +304,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
298
  num_inference_steps,
299
  latent_file, # Add latent_file to the inputs
300
  ip_scale,
 
301
  ],
302
  outputs=[result, expanded_prompt_output],
303
  )
 
38
 
39
  hftoken = os.getenv("HF_TOKEN")
40
 
41
+ #image_encoder_path = "google/siglip-so400m-patch14-384"
42
+ #image_encoder_path_b = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
43
  ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin")
44
  model_path = 'ford442/stable-diffusion-3.5-large-bf16'
45
 
 
101
  num_inference_steps,
102
  latent_file, # Add latents file input
103
  ip_scale,
104
+ image_encoder_path,
105
  progress=gr.Progress(track_tqdm=True),
106
  ):
107
  upscaler_2.to(torch.device('cpu'))
 
228
  result = gr.Image(label="Result", show_label=False)
229
  with gr.Accordion("Advanced Settings", open=True):
230
  latent_file = gr.File(label="Image File (optional)") # Add latents file input
231
+ image_encoder_path = gr.Dropdown(
232
+ ["google/siglip-so400m-patch14-384", "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"],
233
+ label="CLIP Model",
234
+ )
235
  ip_scale = gr.Slider(
236
  label="Image Prompt Scale",
237
  minimum=0.0,
 
304
  num_inference_steps,
305
  latent_file, # Add latent_file to the inputs
306
  ip_scale,
307
+ image_encoder_path,
308
  ],
309
  outputs=[result, expanded_prompt_output],
310
  )