Update app.py
Browse files
app.py
CHANGED
@@ -15,9 +15,7 @@ from models.transformer_sd3 import SD3Transformer2DModel
|
|
15 |
#from diffusers import StableDiffusion3Pipeline
|
16 |
from transformers import CLIPTextModelWithProjection, T5EncoderModel
|
17 |
from transformers import CLIPTokenizer, T5TokenizerFast
|
18 |
-
#from diffusers import SD3Transformer2DModel, AutoencoderKL
|
19 |
from diffusers import AutoencoderKL
|
20 |
-
#from models.transformer_sd3 import SD3Transformer2DModel
|
21 |
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
22 |
|
23 |
from image_gen_aux import UpscaleWithModel
|
@@ -59,7 +57,7 @@ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
59 |
torch_dtype = torch.bfloat16
|
60 |
|
61 |
transformer = SD3Transformer2DModel.from_pretrained(
|
62 |
-
model_path, subfolder="transformer"
|
63 |
)
|
64 |
|
65 |
vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, low_cpu_mem_usage=False, subfolder='vae', torch_dtype=torch.float32, token=True)
|
@@ -74,21 +72,19 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
74 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
75 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
76 |
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", use_fast=True, subfolder="tokenizer_3", token=True),
|
77 |
-
torch_dtype=torch.bfloat16,
|
78 |
transformer=transformer,
|
79 |
vae=None
|
80 |
#use_safetensors=False,
|
81 |
)
|
82 |
|
83 |
-
|
84 |
|
85 |
-
pipe.to(device)
|
86 |
pipe.vae=vaeX.to(device)
|
87 |
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
88 |
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
89 |
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
90 |
-
|
91 |
-
|
92 |
|
93 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
94 |
|
@@ -120,11 +116,9 @@ def infer(
|
|
120 |
image_encoder_path=None,
|
121 |
progress=gr.Progress(track_tqdm=True),
|
122 |
):
|
123 |
-
|
124 |
pipe.text_encoder=text_encoder
|
125 |
pipe.text_encoder_2=text_encoder_2
|
126 |
pipe.text_encoder_3=text_encoder_3
|
127 |
-
|
128 |
pipe.init_ipadapter(
|
129 |
ip_adapter_path=ipadapter_path,
|
130 |
image_encoder_path=image_encoder_path,
|
@@ -140,25 +134,25 @@ def infer(
|
|
140 |
sd_image_a = Image.open(latent_file.name).convert('RGB')
|
141 |
print("-- using image file and loading ip-adapter --")
|
142 |
#sd_image_a.resize((height,width), Image.LANCZOS)
|
143 |
-
sd_image_a.resize((
|
144 |
if latent_file_2 is not None: # Check if a latent file is provided
|
145 |
sd_image_b = Image.open(latent_file_2.name).convert('RGB')
|
146 |
-
sd_image_b.resize((
|
147 |
else:
|
148 |
sd_image_b = None
|
149 |
if latent_file_3 is not None: # Check if a latent file is provided
|
150 |
sd_image_c = Image.open(latent_file_3.name).convert('RGB')
|
151 |
-
sd_image_c.resize((
|
152 |
else:
|
153 |
sd_image_c = None
|
154 |
if latent_file_4 is not None: # Check if a latent file is provided
|
155 |
sd_image_d = Image.open(latent_file_4.name).convert('RGB')
|
156 |
-
sd_image_d.resize((
|
157 |
else:
|
158 |
sd_image_d = None
|
159 |
if latent_file_5 is not None: # Check if a latent file is provided
|
160 |
sd_image_e = Image.open(latent_file_5.name).convert('RGB')
|
161 |
-
sd_image_e.resize((
|
162 |
else:
|
163 |
sd_image_e = None
|
164 |
print('-- generating image --')
|
|
|
15 |
#from diffusers import StableDiffusion3Pipeline
|
16 |
from transformers import CLIPTextModelWithProjection, T5EncoderModel
|
17 |
from transformers import CLIPTokenizer, T5TokenizerFast
|
|
|
18 |
from diffusers import AutoencoderKL
|
|
|
19 |
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
20 |
|
21 |
from image_gen_aux import UpscaleWithModel
|
|
|
57 |
torch_dtype = torch.bfloat16
|
58 |
|
59 |
transformer = SD3Transformer2DModel.from_pretrained(
|
60 |
+
model_path, subfolder="transformer" #, torch_dtype=torch.bfloat16
|
61 |
)
|
62 |
|
63 |
vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, low_cpu_mem_usage=False, subfolder='vae', torch_dtype=torch.float32, token=True)
|
|
|
72 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
73 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
74 |
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", use_fast=True, subfolder="tokenizer_3", token=True),
|
75 |
+
#torch_dtype=torch.bfloat16,
|
76 |
transformer=transformer,
|
77 |
vae=None
|
78 |
#use_safetensors=False,
|
79 |
)
|
80 |
|
81 |
+
pipe.to(device=device, dtype=torch.bfloat16)
|
82 |
|
83 |
+
#pipe.to(device)
|
84 |
pipe.vae=vaeX.to(device)
|
85 |
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
86 |
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
87 |
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
|
|
|
|
88 |
|
89 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
90 |
|
|
|
116 |
image_encoder_path=None,
|
117 |
progress=gr.Progress(track_tqdm=True),
|
118 |
):
|
|
|
119 |
pipe.text_encoder=text_encoder
|
120 |
pipe.text_encoder_2=text_encoder_2
|
121 |
pipe.text_encoder_3=text_encoder_3
|
|
|
122 |
pipe.init_ipadapter(
|
123 |
ip_adapter_path=ipadapter_path,
|
124 |
image_encoder_path=image_encoder_path,
|
|
|
134 |
sd_image_a = Image.open(latent_file.name).convert('RGB')
|
135 |
print("-- using image file and loading ip-adapter --")
|
136 |
#sd_image_a.resize((height,width), Image.LANCZOS)
|
137 |
+
sd_image_a.resize((width,height), Image.LANCZOS)
|
138 |
if latent_file_2 is not None: # Check if a latent file is provided
|
139 |
sd_image_b = Image.open(latent_file_2.name).convert('RGB')
|
140 |
+
sd_image_b.resize((width,height), Image.LANCZOS)
|
141 |
else:
|
142 |
sd_image_b = None
|
143 |
if latent_file_3 is not None: # Check if a latent file is provided
|
144 |
sd_image_c = Image.open(latent_file_3.name).convert('RGB')
|
145 |
+
sd_image_c.resize((width,height), Image.LANCZOS)
|
146 |
else:
|
147 |
sd_image_c = None
|
148 |
if latent_file_4 is not None: # Check if a latent file is provided
|
149 |
sd_image_d = Image.open(latent_file_4.name).convert('RGB')
|
150 |
+
sd_image_d.resize((width,height), Image.LANCZOS)
|
151 |
else:
|
152 |
sd_image_d = None
|
153 |
if latent_file_5 is not None: # Check if a latent file is provided
|
154 |
sd_image_e = Image.open(latent_file_5.name).convert('RGB')
|
155 |
+
sd_image_e.resize((width,height), Image.LANCZOS)
|
156 |
else:
|
157 |
sd_image_e = None
|
158 |
print('-- generating image --')
|