Update app.py
Browse files
app.py
CHANGED
@@ -66,9 +66,9 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
66 |
"ford442/stable-diffusion-3.5-large-bf16",
|
67 |
# vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
|
68 |
#scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
73 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
74 |
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", use_fast=True, subfolder="tokenizer_3", token=True),
|
@@ -81,6 +81,10 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
81 |
|
82 |
pipe.to(device)
|
83 |
|
|
|
|
|
|
|
|
|
84 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
85 |
|
86 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -111,6 +115,9 @@ def infer(
|
|
111 |
image_encoder_path=None,
|
112 |
progress=gr.Progress(track_tqdm=True),
|
113 |
):
|
|
|
|
|
|
|
114 |
upscaler_2.to(torch.device('cpu'))
|
115 |
torch.set_float32_matmul_precision("highest")
|
116 |
seed = random.randint(0, MAX_SEED)
|
|
|
66 |
"ford442/stable-diffusion-3.5-large-bf16",
|
67 |
# vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
|
68 |
#scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
|
69 |
+
text_encoder=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
|
70 |
+
text_encoder_2=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
|
71 |
+
text_encoder_3=None, #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
72 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
73 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
74 |
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", use_fast=True, subfolder="tokenizer_3", token=True),
|
|
|
81 |
|
82 |
pipe.to(device)
|
83 |
|
84 |
+
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
85 |
+
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
86 |
+
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
87 |
+
|
88 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
89 |
|
90 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
115 |
image_encoder_path=None,
|
116 |
progress=gr.Progress(track_tqdm=True),
|
117 |
):
|
118 |
+
pipe.text_encoder=text_encoder
|
119 |
+
pipe.text_encoder_2=text_encoder_2
|
120 |
+
pipe.text_encoder_3=text_encoder_3
|
121 |
upscaler_2.to(torch.device('cpu'))
|
122 |
torch.set_float32_matmul_precision("highest")
|
123 |
seed = random.randint(0, MAX_SEED)
|