|
import os
|
|
import glob
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from pipeline_flux_ipa import FluxPipeline
|
|
from transformer_flux import FluxTransformer2DModel
|
|
from attention_processor import IPAFluxAttnProcessor2_0
|
|
from transformers import AutoProcessor, SiglipVisionModel
|
|
|
|
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
|
|
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
|
|
|
|
w, h = input_image.size
|
|
if size is not None:
|
|
w_resize_new, h_resize_new = size
|
|
else:
|
|
ratio = min_side / min(h, w)
|
|
w, h = round(ratio*w), round(ratio*h)
|
|
ratio = max_side / max(h, w)
|
|
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
|
|
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
|
|
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
|
|
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
|
|
|
if pad_to_max_side:
|
|
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
|
|
offset_x = (max_side - w_resize_new) // 2
|
|
offset_y = (max_side - h_resize_new) // 2
|
|
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
|
|
input_image = Image.fromarray(res)
|
|
return input_image
|
|
|
|
class MLPProjModel(torch.nn.Module):
|
|
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4):
|
|
super().__init__()
|
|
|
|
self.cross_attention_dim = cross_attention_dim
|
|
self.num_tokens = num_tokens
|
|
|
|
self.proj = torch.nn.Sequential(
|
|
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
|
|
torch.nn.GELU(),
|
|
torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
|
|
)
|
|
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
|
|
|
def forward(self, id_embeds):
|
|
x = self.proj(id_embeds)
|
|
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
|
|
x = self.norm(x)
|
|
return x
|
|
|
|
class IPAdapter:
|
|
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
|
|
self.device = device
|
|
self.image_encoder_path = image_encoder_path
|
|
self.ip_ckpt = ip_ckpt
|
|
self.num_tokens = num_tokens
|
|
|
|
self.pipe = sd_pipe.to(self.device)
|
|
self.set_ip_adapter()
|
|
|
|
|
|
self.image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path).to(self.device, dtype=torch.bfloat16)
|
|
self.clip_image_processor = AutoProcessor.from_pretrained(self.image_encoder_path)
|
|
|
|
|
|
self.image_proj_model = self.init_proj()
|
|
|
|
self.load_ip_adapter()
|
|
|
|
def init_proj(self):
|
|
image_proj_model = MLPProjModel(
|
|
cross_attention_dim=self.pipe.transformer.config.joint_attention_dim,
|
|
id_embeddings_dim=1152,
|
|
num_tokens=self.num_tokens,
|
|
).to(self.device, dtype=torch.bfloat16)
|
|
|
|
return image_proj_model
|
|
|
|
def set_ip_adapter(self):
|
|
transformer = self.pipe.transformer
|
|
ip_attn_procs = {}
|
|
for name in transformer.attn_processors.keys():
|
|
if name.startswith("transformer_blocks.") or name.startswith("single_transformer_blocks"):
|
|
ip_attn_procs[name] = IPAFluxAttnProcessor2_0(
|
|
hidden_size=transformer.config.num_attention_heads * transformer.config.attention_head_dim,
|
|
cross_attention_dim=transformer.config.joint_attention_dim,
|
|
num_tokens=self.num_tokens,
|
|
).to(self.device, dtype=torch.bfloat16)
|
|
else:
|
|
ip_attn_procs[name] = transformer.attn_processors[name]
|
|
|
|
transformer.set_attn_processor(ip_attn_procs)
|
|
|
|
def load_ip_adapter(self):
|
|
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
|
|
self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=True)
|
|
ip_layers = torch.nn.ModuleList(self.pipe.transformer.attn_processors.values())
|
|
ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
|
|
|
|
@torch.inference_mode()
|
|
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
|
|
if pil_image is not None:
|
|
if isinstance(pil_image, Image.Image):
|
|
pil_image = [pil_image]
|
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
|
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=self.image_encoder.dtype)).pooler_output
|
|
clip_image_embeds = clip_image_embeds.to(dtype=torch.bfloat16)
|
|
else:
|
|
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.bfloat16)
|
|
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
|
return image_prompt_embeds
|
|
|
|
def set_scale(self, scale):
|
|
for attn_processor in self.pipe.transformer.attn_processors.values():
|
|
if isinstance(attn_processor, IPAFluxAttnProcessor2_0):
|
|
attn_processor.scale = scale
|
|
|
|
def generate(
|
|
self,
|
|
pil_image=None,
|
|
clip_image_embeds=None,
|
|
prompt=None,
|
|
scale=1.0,
|
|
num_samples=1,
|
|
seed=None,
|
|
guidance_scale=3.5,
|
|
num_inference_steps=24,
|
|
**kwargs,
|
|
):
|
|
self.set_scale(scale)
|
|
|
|
image_prompt_embeds = self.get_image_embeds(
|
|
pil_image=pil_image, clip_image_embeds=clip_image_embeds
|
|
)
|
|
|
|
if seed is None:
|
|
generator = None
|
|
else:
|
|
generator = torch.Generator(self.device).manual_seed(seed)
|
|
|
|
images = self.pipe(
|
|
prompt=prompt,
|
|
image_emb=image_prompt_embeds,
|
|
guidance_scale=guidance_scale,
|
|
num_inference_steps=num_inference_steps,
|
|
generator=generator,
|
|
**kwargs,
|
|
).images
|
|
|
|
return images
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
model_path = "black-forest-labs/FLUX.1-dev"
|
|
image_encoder_path = "google/siglip-so400m-patch14-384"
|
|
ipadapter_path = "./ip-adapter.bin"
|
|
|
|
transformer = FluxTransformer2DModel.from_pretrained(
|
|
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
|
|
)
|
|
|
|
pipe = FluxPipeline.from_pretrained(
|
|
model_path, transformer=transformer, torch_dtype=torch.bfloat16
|
|
)
|
|
|
|
ip_model = IPAdapter(pipe, image_encoder_path, ipadapter_path, device="cuda", num_tokens=128)
|
|
|
|
image_dir = "./assets/images/2.jpg"
|
|
image_name = image_dir.split("/")[-1]
|
|
image = Image.open(image_dir).convert("RGB")
|
|
image = resize_img(image)
|
|
|
|
prompt = "a young girl"
|
|
|
|
images = ip_model.generate(
|
|
pil_image=image,
|
|
prompt=prompt,
|
|
scale=0.7,
|
|
width=960, height=1280,
|
|
seed=42
|
|
)
|
|
|
|
images[0].save(f"results/{image_name}") |