Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -106,16 +106,15 @@ def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str
|
|
| 106 |
def load_and_prepare_model(model_id):
|
| 107 |
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
|
| 108 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
| 109 |
-
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",
|
| 110 |
#vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",use_safetensors=True, torch_dtype=torch.float32,safety_checker=None).to(device).to(torch.bfloat16)
|
| 111 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
| 112 |
# vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None).to('cuda')
|
| 113 |
pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0",use_safetensors=True, torch_dtype=torch.float32)
|
| 114 |
-
pipeX.unet.to(device).to(torch.bfloat16)
|
| 115 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 116 |
model_id,
|
| 117 |
-
torch_dtype=torch.bfloat16,
|
| 118 |
-
|
| 119 |
use_safetensors=True,
|
| 120 |
# vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
|
| 121 |
# vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
|
|
@@ -127,12 +126,12 @@ def load_and_prepare_model(model_id):
|
|
| 127 |
)
|
| 128 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 129 |
#pipe.to('cuda')
|
|
|
|
| 130 |
# pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 131 |
#pipe.to(dtype=torch.bfloat16)
|
|
|
|
| 132 |
pipe.to(device)
|
| 133 |
pipe.to(torch.bfloat16)
|
| 134 |
-
pipe.vae=vae
|
| 135 |
-
pipe.unet = pipeX.unet
|
| 136 |
#pipe.to(device, torch.bfloat16)
|
| 137 |
del pipeX
|
| 138 |
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", algorithm_type="dpmsolver++")
|
|
|
|
| 106 |
def load_and_prepare_model(model_id):
|
| 107 |
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
|
| 108 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
| 109 |
+
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",safety_checker=None)
|
| 110 |
#vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",use_safetensors=True, torch_dtype=torch.float32,safety_checker=None).to(device).to(torch.bfloat16)
|
| 111 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
| 112 |
# vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None).to('cuda')
|
| 113 |
pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0",use_safetensors=True, torch_dtype=torch.float32)
|
|
|
|
| 114 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 115 |
model_id,
|
| 116 |
+
#torch_dtype=torch.bfloat16,
|
| 117 |
+
# add_watermarker=False,
|
| 118 |
use_safetensors=True,
|
| 119 |
# vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
|
| 120 |
# vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
|
|
|
|
| 126 |
)
|
| 127 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 128 |
#pipe.to('cuda')
|
| 129 |
+
pipe.vae=vae
|
| 130 |
# pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 131 |
#pipe.to(dtype=torch.bfloat16)
|
| 132 |
+
pipe.unet = pipeX.unet
|
| 133 |
pipe.to(device)
|
| 134 |
pipe.to(torch.bfloat16)
|
|
|
|
|
|
|
| 135 |
#pipe.to(device, torch.bfloat16)
|
| 136 |
del pipeX
|
| 137 |
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", algorithm_type="dpmsolver++")
|