1inkusFace commited on
Commit
d005151
·
verified ·
1 Parent(s): f43360a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -8
app.py CHANGED
@@ -106,10 +106,9 @@ def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str
106
  negative = ""
107
  return p.replace("{prompt}", positive), n + negative
108
 
109
- unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='unet', low_cpu_mem_usage=False, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
110
 
111
  def load_and_prepare_model():
112
- #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None)
113
  vaeX = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False, low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
114
  pipe = StableDiffusionXLPipeline.from_pretrained(
115
  'ford442/RealVisXL_V5.0_BF16',
@@ -122,7 +121,7 @@ def load_and_prepare_model():
122
  text_encoder=None,
123
  text_encoder_2=None,
124
  vae=None,
125
- #unet=None,
126
  )
127
 
128
  '''
@@ -176,7 +175,7 @@ model = Phi3ForCausalLM.from_pretrained(checkpoint).to('cuda:0')
176
  #model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='cuda') #.to('cuda')
177
 
178
  ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
179
- text_encoder=CLIPTextModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder',token=True) #.to(device=device, dtype=torch.bfloat16)
180
  text_encoder_2=CLIPTextModelWithProjection.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder_2',token=True) #.to(device=device, dtype=torch.bfloat16)
181
 
182
  MAX_SEED = np.iinfo(np.int32).max
@@ -405,6 +404,9 @@ def generate_30(
405
  print(caption)
406
  print(caption_2)
407
  print("-- generating further caption --")
 
 
 
408
  del captioner2
409
  del model5
410
  del processor5
@@ -415,13 +417,17 @@ def generate_30(
415
  expanded = expand_prompt(caption_2)
416
  expanded_1 = expanded[0]
417
  expanded_2 = expanded[1]
 
 
418
  del model
419
  del txt_tokenizer
420
  gc.collect()
421
  torch.cuda.clear_cache()
422
- pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
 
 
423
  pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
424
- pipe.unet=unetX.to(device=device, dtype=torch.bfloat16)
425
 
426
  print('-- generating image --')
427
  sd_image = ip_model.generate(
@@ -485,7 +491,7 @@ def generate_60(
485
  samples=1,
486
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
487
  ):
488
- pipe.text_encoder=text_encoder
489
  pipe.text_encoder_2=text_encoder_2
490
  seed = random.randint(0, MAX_SEED)
491
  generator = torch.Generator(device='cuda').manual_seed(seed)
@@ -575,7 +581,7 @@ def generate_90(
575
  samples=1,
576
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
577
  ):
578
- pipe.text_encoder=text_encoder
579
  pipe.text_encoder_2=text_encoder_2
580
  seed = random.randint(0, MAX_SEED)
581
  generator = torch.Generator(device='cuda').manual_seed(seed)
 
106
  negative = ""
107
  return p.replace("{prompt}", positive), n + negative
108
 
 
109
 
110
  def load_and_prepare_model():
111
+ unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='unet', low_cpu_mem_usage=False, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
112
  vaeX = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False, low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
113
  pipe = StableDiffusionXLPipeline.from_pretrained(
114
  'ford442/RealVisXL_V5.0_BF16',
 
121
  text_encoder=None,
122
  text_encoder_2=None,
123
  vae=None,
124
+ unet=unetX,
125
  )
126
 
127
  '''
 
175
  #model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='cuda') #.to('cuda')
176
 
177
  ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
178
+ text_encoder_1=CLIPTextModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder',token=True) #.to(device=device, dtype=torch.bfloat16)
179
  text_encoder_2=CLIPTextModelWithProjection.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder_2',token=True) #.to(device=device, dtype=torch.bfloat16)
180
 
181
  MAX_SEED = np.iinfo(np.int32).max
 
404
  print(caption)
405
  print(caption_2)
406
  print("-- generating further caption --")
407
+ global model5
408
+ global captioner2
409
+ global processor5
410
  del captioner2
411
  del model5
412
  del processor5
 
417
  expanded = expand_prompt(caption_2)
418
  expanded_1 = expanded[0]
419
  expanded_2 = expanded[1]
420
+ global model
421
+ global txt_tokenizer
422
  del model
423
  del txt_tokenizer
424
  gc.collect()
425
  torch.cuda.clear_cache()
426
+ global text_encoder_1
427
+ global text_encoder_2
428
+ pipe.text_encoder=text_encoder_1.to(device=device, dtype=torch.bfloat16)
429
  pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
430
+ #pipe.unet=unetX.to(device=device, dtype=torch.bfloat16)
431
 
432
  print('-- generating image --')
433
  sd_image = ip_model.generate(
 
491
  samples=1,
492
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
493
  ):
494
+ pipe.text_encoder=text_encoder_1
495
  pipe.text_encoder_2=text_encoder_2
496
  seed = random.randint(0, MAX_SEED)
497
  generator = torch.Generator(device='cuda').manual_seed(seed)
 
581
  samples=1,
582
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
583
  ):
584
+ pipe.text_encoder=text_encoder_1
585
  pipe.text_encoder_2=text_encoder_2
586
  seed = random.randint(0, MAX_SEED)
587
  generator = torch.Generator(device='cuda').manual_seed(seed)