Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -232,6 +232,101 @@ def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
|
| 232 |
f.write(f"Model VAE: sdxl-vae to bfloat safetensor=false before cuda then attn_proc / scale factor 8 \n")
|
| 233 |
f.write(f"Model UNET: ford442/RealVisXL_V5.0_BF16 \n")
|
| 234 |
upload_to_ftp(filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
@spaces.GPU(duration=40)
|
| 237 |
def generate_30(
|
|
@@ -266,39 +361,45 @@ def generate_30(
|
|
| 266 |
sd_image_a = Image.open(latent_file.name).convert('RGB')
|
| 267 |
sd_image_a.resize((height,width), Image.LANCZOS)
|
| 268 |
caption=[]
|
|
|
|
| 269 |
caption.append(captioner(sd_image_a))
|
| 270 |
caption.append(captioner_2(sd_image_a))
|
| 271 |
caption.append(captioner_3(sd_image_a))
|
|
|
|
| 272 |
if latent_file_2 is not None: # Check if a latent file is provided
|
| 273 |
sd_image_b = Image.open(latent_file_2.name).convert('RGB')
|
| 274 |
sd_image_b.resize((height,width), Image.LANCZOS)
|
| 275 |
-
caption.append(captioner(
|
| 276 |
-
caption.append(captioner_2(
|
| 277 |
-
caption.append(captioner_3(
|
|
|
|
| 278 |
else:
|
| 279 |
sd_image_b = None
|
| 280 |
if latent_file_3 is not None: # Check if a latent file is provided
|
| 281 |
sd_image_c = Image.open(latent_file_3.name).convert('RGB')
|
| 282 |
sd_image_c.resize((height,width), Image.LANCZOS)
|
| 283 |
-
caption.append(captioner(
|
| 284 |
-
caption.append(captioner_2(
|
| 285 |
-
caption.append(captioner_3(
|
|
|
|
| 286 |
else:
|
| 287 |
sd_image_c = None
|
| 288 |
if latent_file_4 is not None: # Check if a latent file is provided
|
| 289 |
sd_image_d = Image.open(latent_file_4.name).convert('RGB')
|
| 290 |
sd_image_d.resize((height,width), Image.LANCZOS)
|
| 291 |
-
caption.append(captioner(
|
| 292 |
-
caption.append(captioner_2(
|
| 293 |
-
caption.append(captioner_3(
|
|
|
|
| 294 |
else:
|
| 295 |
sd_image_d = None
|
| 296 |
if latent_file_5 is not None: # Check if a latent file is provided
|
| 297 |
sd_image_e = Image.open(latent_file_5.name).convert('RGB')
|
| 298 |
sd_image_e.resize((height,width), Image.LANCZOS)
|
| 299 |
-
caption.append(captioner(
|
| 300 |
-
caption.append(captioner_2(
|
| 301 |
-
caption.append(captioner_3(
|
|
|
|
| 302 |
else:
|
| 303 |
sd_image_e = None
|
| 304 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
@@ -307,58 +408,9 @@ def generate_30(
|
|
| 307 |
print(caption)
|
| 308 |
print("-- generating further caption --")
|
| 309 |
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
)
|
| 314 |
-
user_prompt_rewrite = (
|
| 315 |
-
"Rewrite this prompt to be more descriptive and detailed and only return the rewritten text: "
|
| 316 |
-
)
|
| 317 |
-
user_prompt_rewrite_2 = (
|
| 318 |
-
"Rephrase this scene to have more elaborate details: "
|
| 319 |
-
)
|
| 320 |
-
input_text = f"{system_prompt_rewrite} {user_prompt_rewrite} {prompt}"
|
| 321 |
-
input_text_2 = f"{system_prompt_rewrite} {user_prompt_rewrite_2} {prompt}"
|
| 322 |
-
print("-- got prompt --")
|
| 323 |
-
# Encode the input text and include the attention mask
|
| 324 |
-
encoded_inputs = tokenizer(input_text, return_tensors="pt", return_attention_mask=True)
|
| 325 |
-
encoded_inputs_2 = tokenizer(input_text_2, return_tensors="pt", return_attention_mask=True)
|
| 326 |
-
# Ensure all values are on the correct device
|
| 327 |
-
input_ids = encoded_inputs["input_ids"].to(device)
|
| 328 |
-
input_ids_2 = encoded_inputs_2["input_ids"].to(device)
|
| 329 |
-
attention_mask = encoded_inputs["attention_mask"].to(device)
|
| 330 |
-
attention_mask_2 = encoded_inputs_2["attention_mask"].to(device)
|
| 331 |
-
print("-- tokenize prompt --")
|
| 332 |
-
# Google T5
|
| 333 |
-
#input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
| 334 |
-
outputs = model.generate(
|
| 335 |
-
input_ids=input_ids,
|
| 336 |
-
attention_mask=attention_mask,
|
| 337 |
-
max_new_tokens=512,
|
| 338 |
-
temperature=0.2,
|
| 339 |
-
top_p=0.9,
|
| 340 |
-
do_sample=True,
|
| 341 |
-
)
|
| 342 |
-
outputs_2 = model.generate(
|
| 343 |
-
input_ids=input_ids_2,
|
| 344 |
-
attention_mask=attention_mask_2,
|
| 345 |
-
max_new_tokens=65,
|
| 346 |
-
temperature=0.2,
|
| 347 |
-
top_p=0.9,
|
| 348 |
-
do_sample=True,
|
| 349 |
-
)
|
| 350 |
-
# Use the encoded tensor 'text_inputs' here
|
| 351 |
-
enhanced_prompt = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 352 |
-
enhanced_prompt_2 = tokenizer.decode(outputs_2[0], skip_special_tokens=True)
|
| 353 |
-
print('-- generated prompt --')
|
| 354 |
-
enhanced_prompt = filter_text(enhanced_prompt,prompt)
|
| 355 |
-
enhanced_prompt_2 = filter_text(enhanced_prompt_2,prompt)
|
| 356 |
-
print('-- filtered prompt --')
|
| 357 |
-
print(enhanced_prompt)
|
| 358 |
-
print('-- filtered prompt 2 --')
|
| 359 |
-
print(enhanced_prompt_2)
|
| 360 |
-
|
| 361 |
-
|
| 362 |
|
| 363 |
|
| 364 |
print('-- generating image --')
|
|
|
|
| 232 |
f.write(f"Model VAE: sdxl-vae to bfloat safetensor=false before cuda then attn_proc / scale factor 8 \n")
|
| 233 |
f.write(f"Model UNET: ford442/RealVisXL_V5.0_BF16 \n")
|
| 234 |
upload_to_ftp(filename)
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def captioning(img):
|
| 238 |
+
prompts_array = [
|
| 239 |
+
"Adjectives describing this scene are:",
|
| 240 |
+
"The color scheme of this image is",
|
| 241 |
+
"This scene could be described in detail as",
|
| 242 |
+
"The characters in this scene are",
|
| 243 |
+
"The larger details in this scene include",
|
| 244 |
+
"The smaller details in this scene include",
|
| 245 |
+
"The feeling this scene seems like",
|
| 246 |
+
"The setting of this scene must be located",
|
| 247 |
+
# Add more prompts here
|
| 248 |
+
]
|
| 249 |
+
|
| 250 |
+
output_prompt=[]
|
| 251 |
+
|
| 252 |
+
# Initial caption generation without a prompt:
|
| 253 |
+
inputsa = processor5(images=img, return_tensors="pt").to('cuda')
|
| 254 |
+
generated_ids = model5.generate(**inputsa, min_length=42, max_length=42)
|
| 255 |
+
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 256 |
+
print(generated_text)
|
| 257 |
+
|
| 258 |
+
# Loop through prompts array:
|
| 259 |
+
for prompt in prompts_array:
|
| 260 |
+
inputs = processor5(images=img, text=prompt, return_tensors="pt").to('cuda')
|
| 261 |
+
generated_ids = model5.generate(**inputs, min_length=32, max_length=42) # Adjust max_length if needed
|
| 262 |
+
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 263 |
+
response_text = generated_text.replace(prompt, "").strip() #Or could try .split(prompt, 1)[-1].strip()
|
| 264 |
+
output_prompt.append(response_text)
|
| 265 |
+
print(f"{response_text}\n") # Print only the response text
|
| 266 |
+
|
| 267 |
+
# Continue conversation:
|
| 268 |
+
inputf = processor5(images=img, text=generated_text + 'So therefore', return_tensors="pt").to('cuda')
|
| 269 |
+
generated_ids = model5.generate(**inputf, max_length=42)
|
| 270 |
+
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 271 |
+
response_text = generated_text.replace(generated_text, "").strip() # Remove the previous text plus 'So therefore'
|
| 272 |
+
print(response_text)
|
| 273 |
+
output_prompt.append(response_text)
|
| 274 |
+
print(output_prompt)
|
| 275 |
+
return output_prompt
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
def expand_prompt(prompt):
|
| 279 |
+
system_prompt_rewrite = (
|
| 280 |
+
"You are an AI assistant that rewrites image prompts to be more descriptive and detailed."
|
| 281 |
+
)
|
| 282 |
+
user_prompt_rewrite = (
|
| 283 |
+
"Rewrite this prompt to be more descriptive and detailed and only return the rewritten text: "
|
| 284 |
+
)
|
| 285 |
+
user_prompt_rewrite_2 = (
|
| 286 |
+
"Rephrase this scene to have more elaborate details: "
|
| 287 |
+
)
|
| 288 |
+
input_text = f"{system_prompt_rewrite} {user_prompt_rewrite} {prompt}"
|
| 289 |
+
input_text_2 = f"{system_prompt_rewrite} {user_prompt_rewrite_2} {prompt}"
|
| 290 |
+
print("-- got prompt --")
|
| 291 |
+
# Encode the input text and include the attention mask
|
| 292 |
+
encoded_inputs = txt_tokenizer(input_text, return_tensors="pt", return_attention_mask=True)
|
| 293 |
+
encoded_inputs_2 = txt_tokenizer(input_text_2, return_tensors="pt", return_attention_mask=True)
|
| 294 |
+
# Ensure all values are on the correct device
|
| 295 |
+
input_ids = encoded_inputs["input_ids"].to(device)
|
| 296 |
+
input_ids_2 = encoded_inputs_2["input_ids"].to(device)
|
| 297 |
+
attention_mask = encoded_inputs["attention_mask"].to(device)
|
| 298 |
+
attention_mask_2 = encoded_inputs_2["attention_mask"].to(device)
|
| 299 |
+
print("-- tokenize prompt --")
|
| 300 |
+
# Google T5
|
| 301 |
+
#input_ids = txt_tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
| 302 |
+
outputs = model.generate(
|
| 303 |
+
input_ids=input_ids,
|
| 304 |
+
attention_mask=attention_mask,
|
| 305 |
+
max_new_tokens=512,
|
| 306 |
+
temperature=0.2,
|
| 307 |
+
top_p=0.9,
|
| 308 |
+
do_sample=True,
|
| 309 |
+
)
|
| 310 |
+
outputs_2 = model.generate(
|
| 311 |
+
input_ids=input_ids_2,
|
| 312 |
+
attention_mask=attention_mask_2,
|
| 313 |
+
max_new_tokens=65,
|
| 314 |
+
temperature=0.2,
|
| 315 |
+
top_p=0.9,
|
| 316 |
+
do_sample=True,
|
| 317 |
+
)
|
| 318 |
+
# Use the encoded tensor 'text_inputs' here
|
| 319 |
+
enhanced_prompt = txt_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 320 |
+
enhanced_prompt_2 = txt_tokenizer.decode(outputs_2[0], skip_special_tokens=True)
|
| 321 |
+
print('-- generated prompt --')
|
| 322 |
+
enhanced_prompt = filter_text(enhanced_prompt,prompt)
|
| 323 |
+
enhanced_prompt_2 = filter_text(enhanced_prompt_2,prompt)
|
| 324 |
+
print('-- filtered prompt --')
|
| 325 |
+
print(enhanced_prompt)
|
| 326 |
+
print('-- filtered prompt 2 --')
|
| 327 |
+
print(enhanced_prompt_2)
|
| 328 |
+
enh_prompt=[enhanced_prompt,enhanced_prompt_2]
|
| 329 |
+
return enh_prompt
|
| 330 |
|
| 331 |
@spaces.GPU(duration=40)
|
| 332 |
def generate_30(
|
|
|
|
| 361 |
sd_image_a = Image.open(latent_file.name).convert('RGB')
|
| 362 |
sd_image_a.resize((height,width), Image.LANCZOS)
|
| 363 |
caption=[]
|
| 364 |
+
caption_2=[]
|
| 365 |
caption.append(captioner(sd_image_a))
|
| 366 |
caption.append(captioner_2(sd_image_a))
|
| 367 |
caption.append(captioner_3(sd_image_a))
|
| 368 |
+
caption_2.append(captioning(sd_image_a))
|
| 369 |
if latent_file_2 is not None: # Check if a latent file is provided
|
| 370 |
sd_image_b = Image.open(latent_file_2.name).convert('RGB')
|
| 371 |
sd_image_b.resize((height,width), Image.LANCZOS)
|
| 372 |
+
caption.append(captioner(sd_image_b))
|
| 373 |
+
caption.append(captioner_2(sd_image_b))
|
| 374 |
+
caption.append(captioner_3(sd_image_b))
|
| 375 |
+
caption_2.append(captioning(sd_image_b))
|
| 376 |
else:
|
| 377 |
sd_image_b = None
|
| 378 |
if latent_file_3 is not None: # Check if a latent file is provided
|
| 379 |
sd_image_c = Image.open(latent_file_3.name).convert('RGB')
|
| 380 |
sd_image_c.resize((height,width), Image.LANCZOS)
|
| 381 |
+
caption.append(captioner(sd_image_c))
|
| 382 |
+
caption.append(captioner_2(sd_image_c))
|
| 383 |
+
caption.append(captioner_3(sd_image_c))
|
| 384 |
+
caption_2.append(captioning(sd_image_c))
|
| 385 |
else:
|
| 386 |
sd_image_c = None
|
| 387 |
if latent_file_4 is not None: # Check if a latent file is provided
|
| 388 |
sd_image_d = Image.open(latent_file_4.name).convert('RGB')
|
| 389 |
sd_image_d.resize((height,width), Image.LANCZOS)
|
| 390 |
+
caption.append(captioner(sd_image_d))
|
| 391 |
+
caption.append(captioner_2(sd_image_d))
|
| 392 |
+
caption.append(captioner_3(sd_image_d))
|
| 393 |
+
caption_2.append(captioning(sd_image_d))
|
| 394 |
else:
|
| 395 |
sd_image_d = None
|
| 396 |
if latent_file_5 is not None: # Check if a latent file is provided
|
| 397 |
sd_image_e = Image.open(latent_file_5.name).convert('RGB')
|
| 398 |
sd_image_e.resize((height,width), Image.LANCZOS)
|
| 399 |
+
caption.append(captioner(sd_image_e))
|
| 400 |
+
caption.append(captioner_2(sd_image_e))
|
| 401 |
+
caption.append(captioner_3(sd_image_e))
|
| 402 |
+
caption_2.append(captioning(sd_image_e))
|
| 403 |
else:
|
| 404 |
sd_image_e = None
|
| 405 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
|
|
| 408 |
print(caption)
|
| 409 |
print("-- generating further caption --")
|
| 410 |
|
| 411 |
+
expand_prompt(prompt)
|
| 412 |
+
expand_prompt(caption)
|
| 413 |
+
expand_prompt(caption_2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 414 |
|
| 415 |
|
| 416 |
print('-- generating image --')
|