Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -232,6 +232,101 @@ def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
|
232 |
f.write(f"Model VAE: sdxl-vae to bfloat safetensor=false before cuda then attn_proc / scale factor 8 \n")
|
233 |
f.write(f"Model UNET: ford442/RealVisXL_V5.0_BF16 \n")
|
234 |
upload_to_ftp(filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
@spaces.GPU(duration=40)
|
237 |
def generate_30(
|
@@ -266,39 +361,45 @@ def generate_30(
|
|
266 |
sd_image_a = Image.open(latent_file.name).convert('RGB')
|
267 |
sd_image_a.resize((height,width), Image.LANCZOS)
|
268 |
caption=[]
|
|
|
269 |
caption.append(captioner(sd_image_a))
|
270 |
caption.append(captioner_2(sd_image_a))
|
271 |
caption.append(captioner_3(sd_image_a))
|
|
|
272 |
if latent_file_2 is not None: # Check if a latent file is provided
|
273 |
sd_image_b = Image.open(latent_file_2.name).convert('RGB')
|
274 |
sd_image_b.resize((height,width), Image.LANCZOS)
|
275 |
-
caption.append(captioner(
|
276 |
-
caption.append(captioner_2(
|
277 |
-
caption.append(captioner_3(
|
|
|
278 |
else:
|
279 |
sd_image_b = None
|
280 |
if latent_file_3 is not None: # Check if a latent file is provided
|
281 |
sd_image_c = Image.open(latent_file_3.name).convert('RGB')
|
282 |
sd_image_c.resize((height,width), Image.LANCZOS)
|
283 |
-
caption.append(captioner(
|
284 |
-
caption.append(captioner_2(
|
285 |
-
caption.append(captioner_3(
|
|
|
286 |
else:
|
287 |
sd_image_c = None
|
288 |
if latent_file_4 is not None: # Check if a latent file is provided
|
289 |
sd_image_d = Image.open(latent_file_4.name).convert('RGB')
|
290 |
sd_image_d.resize((height,width), Image.LANCZOS)
|
291 |
-
caption.append(captioner(
|
292 |
-
caption.append(captioner_2(
|
293 |
-
caption.append(captioner_3(
|
|
|
294 |
else:
|
295 |
sd_image_d = None
|
296 |
if latent_file_5 is not None: # Check if a latent file is provided
|
297 |
sd_image_e = Image.open(latent_file_5.name).convert('RGB')
|
298 |
sd_image_e.resize((height,width), Image.LANCZOS)
|
299 |
-
caption.append(captioner(
|
300 |
-
caption.append(captioner_2(
|
301 |
-
caption.append(captioner_3(
|
|
|
302 |
else:
|
303 |
sd_image_e = None
|
304 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
@@ -307,58 +408,9 @@ def generate_30(
|
|
307 |
print(caption)
|
308 |
print("-- generating further caption --")
|
309 |
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
)
|
314 |
-
user_prompt_rewrite = (
|
315 |
-
"Rewrite this prompt to be more descriptive and detailed and only return the rewritten text: "
|
316 |
-
)
|
317 |
-
user_prompt_rewrite_2 = (
|
318 |
-
"Rephrase this scene to have more elaborate details: "
|
319 |
-
)
|
320 |
-
input_text = f"{system_prompt_rewrite} {user_prompt_rewrite} {prompt}"
|
321 |
-
input_text_2 = f"{system_prompt_rewrite} {user_prompt_rewrite_2} {prompt}"
|
322 |
-
print("-- got prompt --")
|
323 |
-
# Encode the input text and include the attention mask
|
324 |
-
encoded_inputs = tokenizer(input_text, return_tensors="pt", return_attention_mask=True)
|
325 |
-
encoded_inputs_2 = tokenizer(input_text_2, return_tensors="pt", return_attention_mask=True)
|
326 |
-
# Ensure all values are on the correct device
|
327 |
-
input_ids = encoded_inputs["input_ids"].to(device)
|
328 |
-
input_ids_2 = encoded_inputs_2["input_ids"].to(device)
|
329 |
-
attention_mask = encoded_inputs["attention_mask"].to(device)
|
330 |
-
attention_mask_2 = encoded_inputs_2["attention_mask"].to(device)
|
331 |
-
print("-- tokenize prompt --")
|
332 |
-
# Google T5
|
333 |
-
#input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
334 |
-
outputs = model.generate(
|
335 |
-
input_ids=input_ids,
|
336 |
-
attention_mask=attention_mask,
|
337 |
-
max_new_tokens=512,
|
338 |
-
temperature=0.2,
|
339 |
-
top_p=0.9,
|
340 |
-
do_sample=True,
|
341 |
-
)
|
342 |
-
outputs_2 = model.generate(
|
343 |
-
input_ids=input_ids_2,
|
344 |
-
attention_mask=attention_mask_2,
|
345 |
-
max_new_tokens=65,
|
346 |
-
temperature=0.2,
|
347 |
-
top_p=0.9,
|
348 |
-
do_sample=True,
|
349 |
-
)
|
350 |
-
# Use the encoded tensor 'text_inputs' here
|
351 |
-
enhanced_prompt = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
352 |
-
enhanced_prompt_2 = tokenizer.decode(outputs_2[0], skip_special_tokens=True)
|
353 |
-
print('-- generated prompt --')
|
354 |
-
enhanced_prompt = filter_text(enhanced_prompt,prompt)
|
355 |
-
enhanced_prompt_2 = filter_text(enhanced_prompt_2,prompt)
|
356 |
-
print('-- filtered prompt --')
|
357 |
-
print(enhanced_prompt)
|
358 |
-
print('-- filtered prompt 2 --')
|
359 |
-
print(enhanced_prompt_2)
|
360 |
-
|
361 |
-
|
362 |
|
363 |
|
364 |
print('-- generating image --')
|
|
|
232 |
f.write(f"Model VAE: sdxl-vae to bfloat safetensor=false before cuda then attn_proc / scale factor 8 \n")
|
233 |
f.write(f"Model UNET: ford442/RealVisXL_V5.0_BF16 \n")
|
234 |
upload_to_ftp(filename)
|
235 |
+
|
236 |
+
|
237 |
+
def captioning(img):
|
238 |
+
prompts_array = [
|
239 |
+
"Adjectives describing this scene are:",
|
240 |
+
"The color scheme of this image is",
|
241 |
+
"This scene could be described in detail as",
|
242 |
+
"The characters in this scene are",
|
243 |
+
"The larger details in this scene include",
|
244 |
+
"The smaller details in this scene include",
|
245 |
+
"The feeling this scene seems like",
|
246 |
+
"The setting of this scene must be located",
|
247 |
+
# Add more prompts here
|
248 |
+
]
|
249 |
+
|
250 |
+
output_prompt=[]
|
251 |
+
|
252 |
+
# Initial caption generation without a prompt:
|
253 |
+
inputsa = processor5(images=img, return_tensors="pt").to('cuda')
|
254 |
+
generated_ids = model5.generate(**inputsa, min_length=42, max_length=42)
|
255 |
+
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
256 |
+
print(generated_text)
|
257 |
+
|
258 |
+
# Loop through prompts array:
|
259 |
+
for prompt in prompts_array:
|
260 |
+
inputs = processor5(images=img, text=prompt, return_tensors="pt").to('cuda')
|
261 |
+
generated_ids = model5.generate(**inputs, min_length=32, max_length=42) # Adjust max_length if needed
|
262 |
+
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
263 |
+
response_text = generated_text.replace(prompt, "").strip() #Or could try .split(prompt, 1)[-1].strip()
|
264 |
+
output_prompt.append(response_text)
|
265 |
+
print(f"{response_text}\n") # Print only the response text
|
266 |
+
|
267 |
+
# Continue conversation:
|
268 |
+
inputf = processor5(images=img, text=generated_text + 'So therefore', return_tensors="pt").to('cuda')
|
269 |
+
generated_ids = model5.generate(**inputf, max_length=42)
|
270 |
+
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
271 |
+
response_text = generated_text.replace(generated_text, "").strip() # Remove the previous text plus 'So therefore'
|
272 |
+
print(response_text)
|
273 |
+
output_prompt.append(response_text)
|
274 |
+
print(output_prompt)
|
275 |
+
return output_prompt
|
276 |
+
|
277 |
+
|
278 |
+
def expand_prompt(prompt):
|
279 |
+
system_prompt_rewrite = (
|
280 |
+
"You are an AI assistant that rewrites image prompts to be more descriptive and detailed."
|
281 |
+
)
|
282 |
+
user_prompt_rewrite = (
|
283 |
+
"Rewrite this prompt to be more descriptive and detailed and only return the rewritten text: "
|
284 |
+
)
|
285 |
+
user_prompt_rewrite_2 = (
|
286 |
+
"Rephrase this scene to have more elaborate details: "
|
287 |
+
)
|
288 |
+
input_text = f"{system_prompt_rewrite} {user_prompt_rewrite} {prompt}"
|
289 |
+
input_text_2 = f"{system_prompt_rewrite} {user_prompt_rewrite_2} {prompt}"
|
290 |
+
print("-- got prompt --")
|
291 |
+
# Encode the input text and include the attention mask
|
292 |
+
encoded_inputs = txt_tokenizer(input_text, return_tensors="pt", return_attention_mask=True)
|
293 |
+
encoded_inputs_2 = txt_tokenizer(input_text_2, return_tensors="pt", return_attention_mask=True)
|
294 |
+
# Ensure all values are on the correct device
|
295 |
+
input_ids = encoded_inputs["input_ids"].to(device)
|
296 |
+
input_ids_2 = encoded_inputs_2["input_ids"].to(device)
|
297 |
+
attention_mask = encoded_inputs["attention_mask"].to(device)
|
298 |
+
attention_mask_2 = encoded_inputs_2["attention_mask"].to(device)
|
299 |
+
print("-- tokenize prompt --")
|
300 |
+
# Google T5
|
301 |
+
#input_ids = txt_tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
302 |
+
outputs = model.generate(
|
303 |
+
input_ids=input_ids,
|
304 |
+
attention_mask=attention_mask,
|
305 |
+
max_new_tokens=512,
|
306 |
+
temperature=0.2,
|
307 |
+
top_p=0.9,
|
308 |
+
do_sample=True,
|
309 |
+
)
|
310 |
+
outputs_2 = model.generate(
|
311 |
+
input_ids=input_ids_2,
|
312 |
+
attention_mask=attention_mask_2,
|
313 |
+
max_new_tokens=65,
|
314 |
+
temperature=0.2,
|
315 |
+
top_p=0.9,
|
316 |
+
do_sample=True,
|
317 |
+
)
|
318 |
+
# Use the encoded tensor 'text_inputs' here
|
319 |
+
enhanced_prompt = txt_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
320 |
+
enhanced_prompt_2 = txt_tokenizer.decode(outputs_2[0], skip_special_tokens=True)
|
321 |
+
print('-- generated prompt --')
|
322 |
+
enhanced_prompt = filter_text(enhanced_prompt,prompt)
|
323 |
+
enhanced_prompt_2 = filter_text(enhanced_prompt_2,prompt)
|
324 |
+
print('-- filtered prompt --')
|
325 |
+
print(enhanced_prompt)
|
326 |
+
print('-- filtered prompt 2 --')
|
327 |
+
print(enhanced_prompt_2)
|
328 |
+
enh_prompt=[enhanced_prompt,enhanced_prompt_2]
|
329 |
+
return enh_prompt
|
330 |
|
331 |
@spaces.GPU(duration=40)
|
332 |
def generate_30(
|
|
|
361 |
sd_image_a = Image.open(latent_file.name).convert('RGB')
|
362 |
sd_image_a.resize((height,width), Image.LANCZOS)
|
363 |
caption=[]
|
364 |
+
caption_2=[]
|
365 |
caption.append(captioner(sd_image_a))
|
366 |
caption.append(captioner_2(sd_image_a))
|
367 |
caption.append(captioner_3(sd_image_a))
|
368 |
+
caption_2.append(captioning(sd_image_a))
|
369 |
if latent_file_2 is not None: # Check if a latent file is provided
|
370 |
sd_image_b = Image.open(latent_file_2.name).convert('RGB')
|
371 |
sd_image_b.resize((height,width), Image.LANCZOS)
|
372 |
+
caption.append(captioner(sd_image_b))
|
373 |
+
caption.append(captioner_2(sd_image_b))
|
374 |
+
caption.append(captioner_3(sd_image_b))
|
375 |
+
caption_2.append(captioning(sd_image_b))
|
376 |
else:
|
377 |
sd_image_b = None
|
378 |
if latent_file_3 is not None: # Check if a latent file is provided
|
379 |
sd_image_c = Image.open(latent_file_3.name).convert('RGB')
|
380 |
sd_image_c.resize((height,width), Image.LANCZOS)
|
381 |
+
caption.append(captioner(sd_image_c))
|
382 |
+
caption.append(captioner_2(sd_image_c))
|
383 |
+
caption.append(captioner_3(sd_image_c))
|
384 |
+
caption_2.append(captioning(sd_image_c))
|
385 |
else:
|
386 |
sd_image_c = None
|
387 |
if latent_file_4 is not None: # Check if a latent file is provided
|
388 |
sd_image_d = Image.open(latent_file_4.name).convert('RGB')
|
389 |
sd_image_d.resize((height,width), Image.LANCZOS)
|
390 |
+
caption.append(captioner(sd_image_d))
|
391 |
+
caption.append(captioner_2(sd_image_d))
|
392 |
+
caption.append(captioner_3(sd_image_d))
|
393 |
+
caption_2.append(captioning(sd_image_d))
|
394 |
else:
|
395 |
sd_image_d = None
|
396 |
if latent_file_5 is not None: # Check if a latent file is provided
|
397 |
sd_image_e = Image.open(latent_file_5.name).convert('RGB')
|
398 |
sd_image_e.resize((height,width), Image.LANCZOS)
|
399 |
+
caption.append(captioner(sd_image_e))
|
400 |
+
caption.append(captioner_2(sd_image_e))
|
401 |
+
caption.append(captioner_3(sd_image_e))
|
402 |
+
caption_2.append(captioning(sd_image_e))
|
403 |
else:
|
404 |
sd_image_e = None
|
405 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
|
408 |
print(caption)
|
409 |
print("-- generating further caption --")
|
410 |
|
411 |
+
expand_prompt(prompt)
|
412 |
+
expand_prompt(caption)
|
413 |
+
expand_prompt(caption_2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
414 |
|
415 |
|
416 |
print('-- generating image --')
|