Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -28,6 +28,7 @@ from gradio import themes
|
|
28 |
from hidiffusion import apply_hidiffusion, remove_hidiffusion
|
29 |
|
30 |
import gc
|
|
|
31 |
|
32 |
torch.backends.cuda.matmul.allow_tf32 = False
|
33 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
@@ -95,6 +96,7 @@ STYLE_NAMES = list(styles.keys())
|
|
95 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
96 |
|
97 |
#sampling_schedule = AysSchedules["StableDiffusionXLTimesteps"]
|
|
|
98 |
|
99 |
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
100 |
if style_name in styles:
|
@@ -308,10 +310,17 @@ def generate_30(
|
|
308 |
images.extend(pipe(**batch_options).images)
|
309 |
sd_image_path = f"rv50_A_{timestamp}.png"
|
310 |
images[0].save(sd_image_path,optimize=False,compress_level=0)
|
311 |
-
upload_to_ftp(sd_image_path)
|
312 |
image_paths = [save_image(img) for img in images]
|
313 |
torch.cuda.empty_cache()
|
314 |
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
return image_paths, seed
|
316 |
|
317 |
@spaces.GPU(duration=60)
|
@@ -363,12 +372,19 @@ def generate_60(
|
|
363 |
if "negative_prompt" in batch_options:
|
364 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
365 |
images.extend(pipe(**batch_options).images)
|
366 |
-
sd_image_path = f"rv50_A_{
|
367 |
images[0].save(sd_image_path,optimize=False,compress_level=0)
|
368 |
-
upload_to_ftp(sd_image_path)
|
369 |
image_paths = [save_image(img) for img in images]
|
370 |
torch.cuda.empty_cache()
|
371 |
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
return image_paths, seed
|
373 |
|
374 |
@spaces.GPU(duration=90)
|
@@ -422,10 +438,17 @@ def generate_90(
|
|
422 |
images.extend(pipe(**batch_options).images)
|
423 |
sd_image_path = f"rv50_A_{seed}.png"
|
424 |
images[0].save(sd_image_path,optimize=False,compress_level=0)
|
425 |
-
upload_to_ftp(sd_image_path)
|
426 |
image_paths = [save_image(img) for img in images]
|
427 |
torch.cuda.empty_cache()
|
428 |
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
return image_paths, seed
|
430 |
|
431 |
def load_predefined_images1():
|
|
|
28 |
from hidiffusion import apply_hidiffusion, remove_hidiffusion
|
29 |
|
30 |
import gc
|
31 |
+
from image_gen_aux import UpscaleWithModel
|
32 |
|
33 |
torch.backends.cuda.matmul.allow_tf32 = False
|
34 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
|
|
96 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
97 |
|
98 |
#sampling_schedule = AysSchedules["StableDiffusionXLTimesteps"]
|
99 |
+
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
100 |
|
101 |
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
102 |
if style_name in styles:
|
|
|
310 |
images.extend(pipe(**batch_options).images)
|
311 |
sd_image_path = f"rv50_A_{timestamp}.png"
|
312 |
images[0].save(sd_image_path,optimize=False,compress_level=0)
|
313 |
+
upload_to_ftp(sd_image_path)
|
314 |
image_paths = [save_image(img) for img in images]
|
315 |
torch.cuda.empty_cache()
|
316 |
gc.collect()
|
317 |
+
torch.set_float32_matmul_precision("medium")
|
318 |
+
with torch.no_grad():
|
319 |
+
upscale = upscaler(images[0], tiling=True, tile_width=256, tile_height=256)
|
320 |
+
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
321 |
+
downscale_path = f"rv50_upscale_{timestamp}.png"
|
322 |
+
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
323 |
+
upload_to_ftp(downscale_path)
|
324 |
return image_paths, seed
|
325 |
|
326 |
@spaces.GPU(duration=60)
|
|
|
372 |
if "negative_prompt" in batch_options:
|
373 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
374 |
images.extend(pipe(**batch_options).images)
|
375 |
+
sd_image_path = f"rv50_A_{timestamp}.png"
|
376 |
images[0].save(sd_image_path,optimize=False,compress_level=0)
|
377 |
+
upload_to_ftp(sd_image_path)
|
378 |
image_paths = [save_image(img) for img in images]
|
379 |
torch.cuda.empty_cache()
|
380 |
gc.collect()
|
381 |
+
torch.set_float32_matmul_precision("medium")
|
382 |
+
with torch.no_grad():
|
383 |
+
upscale = upscaler(images[0], tiling=True, tile_width=256, tile_height=256)
|
384 |
+
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
385 |
+
downscale_path = f"rv50_upscale_{timestamp}.png"
|
386 |
+
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
387 |
+
upload_to_ftp(downscale_path)
|
388 |
return image_paths, seed
|
389 |
|
390 |
@spaces.GPU(duration=90)
|
|
|
438 |
images.extend(pipe(**batch_options).images)
|
439 |
sd_image_path = f"rv50_A_{seed}.png"
|
440 |
images[0].save(sd_image_path,optimize=False,compress_level=0)
|
441 |
+
upload_to_ftp(sd_image_path)
|
442 |
image_paths = [save_image(img) for img in images]
|
443 |
torch.cuda.empty_cache()
|
444 |
gc.collect()
|
445 |
+
torch.set_float32_matmul_precision("medium")
|
446 |
+
with torch.no_grad():
|
447 |
+
upscale = upscaler(images[0], tiling=True, tile_width=256, tile_height=256)
|
448 |
+
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
449 |
+
downscale_path = f"rv50_upscale_{timestamp}.png"
|
450 |
+
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
451 |
+
upload_to_ftp(downscale_path)
|
452 |
return image_paths, seed
|
453 |
|
454 |
def load_predefined_images1():
|