ford442 commited on
Commit
6695bc6
·
verified ·
1 Parent(s): 7e4c3ff

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -4
app.py CHANGED
@@ -28,6 +28,7 @@ from gradio import themes
28
  from hidiffusion import apply_hidiffusion, remove_hidiffusion
29
 
30
  import gc
 
31
 
32
  torch.backends.cuda.matmul.allow_tf32 = False
33
  torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
@@ -95,6 +96,7 @@ STYLE_NAMES = list(styles.keys())
95
  HF_TOKEN = os.getenv("HF_TOKEN")
96
 
97
  #sampling_schedule = AysSchedules["StableDiffusionXLTimesteps"]
 
98
 
99
  def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
100
  if style_name in styles:
@@ -308,10 +310,17 @@ def generate_30(
308
  images.extend(pipe(**batch_options).images)
309
  sd_image_path = f"rv50_A_{timestamp}.png"
310
  images[0].save(sd_image_path,optimize=False,compress_level=0)
311
- upload_to_ftp(sd_image_path)
312
  image_paths = [save_image(img) for img in images]
313
  torch.cuda.empty_cache()
314
  gc.collect()
 
 
 
 
 
 
 
315
  return image_paths, seed
316
 
317
  @spaces.GPU(duration=60)
@@ -363,12 +372,19 @@ def generate_60(
363
  if "negative_prompt" in batch_options:
364
  batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
365
  images.extend(pipe(**batch_options).images)
366
- sd_image_path = f"rv50_A_{seed}.png"
367
  images[0].save(sd_image_path,optimize=False,compress_level=0)
368
- upload_to_ftp(sd_image_path)
369
  image_paths = [save_image(img) for img in images]
370
  torch.cuda.empty_cache()
371
  gc.collect()
 
 
 
 
 
 
 
372
  return image_paths, seed
373
 
374
  @spaces.GPU(duration=90)
@@ -422,10 +438,17 @@ def generate_90(
422
  images.extend(pipe(**batch_options).images)
423
  sd_image_path = f"rv50_A_{seed}.png"
424
  images[0].save(sd_image_path,optimize=False,compress_level=0)
425
- upload_to_ftp(sd_image_path)
426
  image_paths = [save_image(img) for img in images]
427
  torch.cuda.empty_cache()
428
  gc.collect()
 
 
 
 
 
 
 
429
  return image_paths, seed
430
 
431
  def load_predefined_images1():
 
28
  from hidiffusion import apply_hidiffusion, remove_hidiffusion
29
 
30
  import gc
31
+ from image_gen_aux import UpscaleWithModel
32
 
33
  torch.backends.cuda.matmul.allow_tf32 = False
34
  torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
 
96
  HF_TOKEN = os.getenv("HF_TOKEN")
97
 
98
  #sampling_schedule = AysSchedules["StableDiffusionXLTimesteps"]
99
+ upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
100
 
101
  def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
102
  if style_name in styles:
 
310
  images.extend(pipe(**batch_options).images)
311
  sd_image_path = f"rv50_A_{timestamp}.png"
312
  images[0].save(sd_image_path,optimize=False,compress_level=0)
313
+ upload_to_ftp(sd_image_path)
314
  image_paths = [save_image(img) for img in images]
315
  torch.cuda.empty_cache()
316
  gc.collect()
317
+ torch.set_float32_matmul_precision("medium")
318
+ with torch.no_grad():
319
+ upscale = upscaler(images[0], tiling=True, tile_width=256, tile_height=256)
320
+ downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
321
+ downscale_path = f"rv50_upscale_{timestamp}.png"
322
+ downscale1.save(downscale_path,optimize=False,compress_level=0)
323
+ upload_to_ftp(downscale_path)
324
  return image_paths, seed
325
 
326
  @spaces.GPU(duration=60)
 
372
  if "negative_prompt" in batch_options:
373
  batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
374
  images.extend(pipe(**batch_options).images)
375
+ sd_image_path = f"rv50_A_{timestamp}.png"
376
  images[0].save(sd_image_path,optimize=False,compress_level=0)
377
+ upload_to_ftp(sd_image_path)
378
  image_paths = [save_image(img) for img in images]
379
  torch.cuda.empty_cache()
380
  gc.collect()
381
+ torch.set_float32_matmul_precision("medium")
382
+ with torch.no_grad():
383
+ upscale = upscaler(images[0], tiling=True, tile_width=256, tile_height=256)
384
+ downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
385
+ downscale_path = f"rv50_upscale_{timestamp}.png"
386
+ downscale1.save(downscale_path,optimize=False,compress_level=0)
387
+ upload_to_ftp(downscale_path)
388
  return image_paths, seed
389
 
390
  @spaces.GPU(duration=90)
 
438
  images.extend(pipe(**batch_options).images)
439
  sd_image_path = f"rv50_A_{seed}.png"
440
  images[0].save(sd_image_path,optimize=False,compress_level=0)
441
+ upload_to_ftp(sd_image_path)
442
  image_paths = [save_image(img) for img in images]
443
  torch.cuda.empty_cache()
444
  gc.collect()
445
+ torch.set_float32_matmul_precision("medium")
446
+ with torch.no_grad():
447
+ upscale = upscaler(images[0], tiling=True, tile_width=256, tile_height=256)
448
+ downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
449
+ downscale_path = f"rv50_upscale_{timestamp}.png"
450
+ downscale1.save(downscale_path,optimize=False,compress_level=0)
451
+ upload_to_ftp(downscale_path)
452
  return image_paths, seed
453
 
454
  def load_predefined_images1():