Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -253,14 +253,36 @@ def captioning(img):
|
|
253 |
output_prompt=[]
|
254 |
# Initial caption generation without a prompt:
|
255 |
inputsa = processor5(images=img, return_tensors="pt").to('cuda')
|
256 |
-
generated_ids = model5.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
258 |
output_prompt.append(generated_text)
|
259 |
print(generated_text)
|
260 |
# Loop through prompts array:
|
261 |
for prompt in prompts_array:
|
262 |
inputs = processor5(images=img, text=prompt, return_tensors="pt").to('cuda')
|
263 |
-
generated_ids = model5.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
265 |
response_text = generated_text.replace(prompt, "").strip() #Or could try .split(prompt, 1)[-1].strip()
|
266 |
output_prompt.append(response_text)
|
@@ -364,7 +386,6 @@ def generate_30(
|
|
364 |
latent_file_5_scale: float = 1.0,
|
365 |
samples=1,
|
366 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
367 |
-
|
368 |
):
|
369 |
global captioner_2
|
370 |
captioner2=captioner_2
|
@@ -443,7 +464,6 @@ def generate_30(
|
|
443 |
print(new_prompt)
|
444 |
print("-- FINAL PROMPT --")
|
445 |
print("-- ------------ --")
|
446 |
-
|
447 |
#global model
|
448 |
#global txt_tokenizer
|
449 |
#del model
|
|
|
253 |
output_prompt=[]
|
254 |
# Initial caption generation without a prompt:
|
255 |
inputsa = processor5(images=img, return_tensors="pt").to('cuda')
|
256 |
+
generated_ids = model5.generate(
|
257 |
+
**inputsa,
|
258 |
+
do_sample=False,
|
259 |
+
num_beams=5,
|
260 |
+
max_length=256,
|
261 |
+
min_length=1,
|
262 |
+
top_p=0.9,
|
263 |
+
repetition_penalty=1.5,
|
264 |
+
length_penalty=1.0,
|
265 |
+
temperature=1,
|
266 |
+
)
|
267 |
+
|
268 |
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
269 |
output_prompt.append(generated_text)
|
270 |
print(generated_text)
|
271 |
# Loop through prompts array:
|
272 |
for prompt in prompts_array:
|
273 |
inputs = processor5(images=img, text=prompt, return_tensors="pt").to('cuda')
|
274 |
+
generated_ids = model5.generate(
|
275 |
+
**inputs,
|
276 |
+
do_sample=False,
|
277 |
+
num_beams=5,
|
278 |
+
max_length=256,
|
279 |
+
min_length=1,
|
280 |
+
top_p=0.9,
|
281 |
+
repetition_penalty=1.5,
|
282 |
+
length_penalty=1.0,
|
283 |
+
temperature=1,
|
284 |
+
)
|
285 |
+
# Adjust max_length if needed
|
286 |
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
287 |
response_text = generated_text.replace(prompt, "").strip() #Or could try .split(prompt, 1)[-1].strip()
|
288 |
output_prompt.append(response_text)
|
|
|
386 |
latent_file_5_scale: float = 1.0,
|
387 |
samples=1,
|
388 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
|
|
389 |
):
|
390 |
global captioner_2
|
391 |
captioner2=captioner_2
|
|
|
464 |
print(new_prompt)
|
465 |
print("-- FINAL PROMPT --")
|
466 |
print("-- ------------ --")
|
|
|
467 |
#global model
|
468 |
#global txt_tokenizer
|
469 |
#del model
|