Spaces:
Runtime error
Runtime error
Update ip_adapter/ip_adapter.py
Browse files- ip_adapter/ip_adapter.py +16 -7
ip_adapter/ip_adapter.py
CHANGED
|
@@ -189,6 +189,7 @@ class IPAdapterXL(IPAdapter):
|
|
| 189 |
def generate(
|
| 190 |
self,
|
| 191 |
pil_image,
|
|
|
|
| 192 |
prompt=None,
|
| 193 |
negative_prompt=None,
|
| 194 |
scale=1.0,
|
|
@@ -213,14 +214,22 @@ class IPAdapterXL(IPAdapter):
|
|
| 213 |
prompt = [prompt] * num_prompts
|
| 214 |
if not isinstance(negative_prompt, List):
|
| 215 |
negative_prompt = [negative_prompt] * num_prompts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
-
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
|
| 218 |
-
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
| 219 |
-
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
| 220 |
-
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 221 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
| 222 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 223 |
-
|
| 224 |
with torch.inference_mode():
|
| 225 |
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = self.pipe.encode_prompt(
|
| 226 |
prompt, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt)
|
|
|
|
| 189 |
def generate(
|
| 190 |
self,
|
| 191 |
pil_image,
|
| 192 |
+
pil_image_2=None,
|
| 193 |
prompt=None,
|
| 194 |
negative_prompt=None,
|
| 195 |
scale=1.0,
|
|
|
|
| 214 |
prompt = [prompt] * num_prompts
|
| 215 |
if not isinstance(negative_prompt, List):
|
| 216 |
negative_prompt = [negative_prompt] * num_prompts
|
| 217 |
+
if pil_image_2 != None:
|
| 218 |
+
print('Using secondary image.')
|
| 219 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
|
| 220 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
| 221 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
| 222 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 223 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
| 224 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 225 |
+
else:
|
| 226 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
|
| 227 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
| 228 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
| 229 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 230 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
| 231 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
with torch.inference_mode():
|
| 234 |
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = self.pipe.encode_prompt(
|
| 235 |
prompt, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt)
|