Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -243,7 +243,6 @@ def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
|
243 |
f.write(f"Model UNET: ford442/RealVisXL_V5.0_BF16 \n")
|
244 |
upload_to_ftp(filename)
|
245 |
|
246 |
-
@torch.no_grad()
|
247 |
def captioning(img):
|
248 |
prompts_array = [
|
249 |
# "Adjectives describing this scene are:",
|
@@ -265,7 +264,7 @@ def captioning(img):
|
|
265 |
**inputsa,
|
266 |
do_sample=False,
|
267 |
num_beams=5,
|
268 |
-
max_length=
|
269 |
min_length=64,
|
270 |
top_p=0.9,
|
271 |
repetition_penalty=1.5,
|
@@ -280,12 +279,13 @@ def captioning(img):
|
|
280 |
# Loop through prompts array:
|
281 |
for prompt in prompts_array:
|
282 |
inputs = processor5(images=img, text=prompt, return_tensors="pt").to('cuda')
|
|
|
283 |
generated_ids = model5.generate(
|
284 |
**inputs,
|
285 |
do_sample=False,
|
286 |
num_beams=5,
|
287 |
max_length=64,
|
288 |
-
|
289 |
top_p=0.9,
|
290 |
repetition_penalty=1.5,
|
291 |
length_penalty=1.0,
|
@@ -297,12 +297,24 @@ def captioning(img):
|
|
297 |
print(f"{response_text}\n")
|
298 |
inputf = processor5(
|
299 |
images=img,
|
300 |
-
text=generated_text + 'So therefore',
|
301 |
return_tensors="pt"
|
302 |
).to('cuda')
|
303 |
-
generated_ids = model5.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
generated_texta = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
305 |
response_text = generated_texta.replace(generated_text, "").strip()
|
|
|
306 |
output_prompt.append(response_text)
|
307 |
output_prompt = " ".join(output_prompt)
|
308 |
return output_prompt
|
@@ -437,8 +449,12 @@ def generate_30(
|
|
437 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
438 |
filename= f'rv_IPb_{timestamp}.png'
|
439 |
print("-- using image file --")
|
|
|
|
|
440 |
prompt = " ".join(prompt)
|
441 |
-
|
|
|
|
|
442 |
print(captions)
|
443 |
print("-- not generating further caption --")
|
444 |
global model5
|
@@ -562,8 +578,12 @@ def generate_60(
|
|
562 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
563 |
filename= f'rv_IPb_{timestamp}.png'
|
564 |
print("-- using image file --")
|
|
|
|
|
565 |
prompt = " ".join(prompt)
|
566 |
-
|
|
|
|
|
567 |
print(captions)
|
568 |
print("-- not generating further caption --")
|
569 |
global model5
|
@@ -687,8 +707,12 @@ def generate_90(
|
|
687 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
688 |
filename= f'rv_IPb_{timestamp}.png'
|
689 |
print("-- using image file --")
|
|
|
|
|
690 |
prompt = " ".join(prompt)
|
691 |
-
|
|
|
|
|
692 |
print(captions)
|
693 |
print("-- not generating further caption --")
|
694 |
global model5
|
|
|
243 |
f.write(f"Model UNET: ford442/RealVisXL_V5.0_BF16 \n")
|
244 |
upload_to_ftp(filename)
|
245 |
|
|
|
246 |
def captioning(img):
|
247 |
prompts_array = [
|
248 |
# "Adjectives describing this scene are:",
|
|
|
264 |
**inputsa,
|
265 |
do_sample=False,
|
266 |
num_beams=5,
|
267 |
+
max_length=256,
|
268 |
min_length=64,
|
269 |
top_p=0.9,
|
270 |
repetition_penalty=1.5,
|
|
|
279 |
# Loop through prompts array:
|
280 |
for prompt in prompts_array:
|
281 |
inputs = processor5(images=img, text=prompt, return_tensors="pt").to('cuda')
|
282 |
+
#with torch.no_grad():
|
283 |
generated_ids = model5.generate(
|
284 |
**inputs,
|
285 |
do_sample=False,
|
286 |
num_beams=5,
|
287 |
max_length=64,
|
288 |
+
min_length=24,
|
289 |
top_p=0.9,
|
290 |
repetition_penalty=1.5,
|
291 |
length_penalty=1.0,
|
|
|
297 |
print(f"{response_text}\n")
|
298 |
inputf = processor5(
|
299 |
images=img,
|
300 |
+
text=generated_text + ' So therefore, ',
|
301 |
return_tensors="pt"
|
302 |
).to('cuda')
|
303 |
+
generated_ids = model5.generate(
|
304 |
+
**inputf,
|
305 |
+
do_sample=False,
|
306 |
+
num_beams=5,
|
307 |
+
max_length=256,
|
308 |
+
min_length=24,
|
309 |
+
top_p=0.9,
|
310 |
+
repetition_penalty=1.5,
|
311 |
+
length_penalty=1.0,
|
312 |
+
temperature=1,
|
313 |
+
)
|
314 |
+
)
|
315 |
generated_texta = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
316 |
response_text = generated_texta.replace(generated_text, "").strip()
|
317 |
+
print(f"{response_text}\n")
|
318 |
output_prompt.append(response_text)
|
319 |
output_prompt = " ".join(output_prompt)
|
320 |
return output_prompt
|
|
|
449 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
450 |
filename= f'rv_IPb_{timestamp}.png'
|
451 |
print("-- using image file --")
|
452 |
+
print("-- CURRENT PROMPT --")
|
453 |
+
print(prompt)
|
454 |
prompt = " ".join(prompt)
|
455 |
+
print("-- CURRENT PROMPT AFTER .join --")
|
456 |
+
print(prompt)
|
457 |
+
captions = " ".join(caption)
|
458 |
print(captions)
|
459 |
print("-- not generating further caption --")
|
460 |
global model5
|
|
|
578 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
579 |
filename= f'rv_IPb_{timestamp}.png'
|
580 |
print("-- using image file --")
|
581 |
+
print("-- CURRENT PROMPT --")
|
582 |
+
print(prompt)
|
583 |
prompt = " ".join(prompt)
|
584 |
+
print("-- CURRENT PROMPT AFTER .join --")
|
585 |
+
print(prompt)
|
586 |
+
captions = " ".join(caption)
|
587 |
print(captions)
|
588 |
print("-- not generating further caption --")
|
589 |
global model5
|
|
|
707 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
708 |
filename= f'rv_IPb_{timestamp}.png'
|
709 |
print("-- using image file --")
|
710 |
+
print("-- CURRENT PROMPT --")
|
711 |
+
print(prompt)
|
712 |
prompt = " ".join(prompt)
|
713 |
+
print("-- CURRENT PROMPT AFTER .join --")
|
714 |
+
print(prompt)
|
715 |
+
captions = " ".join(caption)
|
716 |
print(captions)
|
717 |
print("-- not generating further caption --")
|
718 |
global model5
|