Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -243,7 +243,6 @@ def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
|
| 243 |
f.write(f"Model UNET: ford442/RealVisXL_V5.0_BF16 \n")
|
| 244 |
upload_to_ftp(filename)
|
| 245 |
|
| 246 |
-
@torch.no_grad()
|
| 247 |
def captioning(img):
|
| 248 |
prompts_array = [
|
| 249 |
# "Adjectives describing this scene are:",
|
|
@@ -265,7 +264,7 @@ def captioning(img):
|
|
| 265 |
**inputsa,
|
| 266 |
do_sample=False,
|
| 267 |
num_beams=5,
|
| 268 |
-
max_length=
|
| 269 |
min_length=64,
|
| 270 |
top_p=0.9,
|
| 271 |
repetition_penalty=1.5,
|
|
@@ -280,12 +279,13 @@ def captioning(img):
|
|
| 280 |
# Loop through prompts array:
|
| 281 |
for prompt in prompts_array:
|
| 282 |
inputs = processor5(images=img, text=prompt, return_tensors="pt").to('cuda')
|
|
|
|
| 283 |
generated_ids = model5.generate(
|
| 284 |
**inputs,
|
| 285 |
do_sample=False,
|
| 286 |
num_beams=5,
|
| 287 |
max_length=64,
|
| 288 |
-
|
| 289 |
top_p=0.9,
|
| 290 |
repetition_penalty=1.5,
|
| 291 |
length_penalty=1.0,
|
|
@@ -297,12 +297,24 @@ def captioning(img):
|
|
| 297 |
print(f"{response_text}\n")
|
| 298 |
inputf = processor5(
|
| 299 |
images=img,
|
| 300 |
-
text=generated_text + 'So therefore',
|
| 301 |
return_tensors="pt"
|
| 302 |
).to('cuda')
|
| 303 |
-
generated_ids = model5.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
generated_texta = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 305 |
response_text = generated_texta.replace(generated_text, "").strip()
|
|
|
|
| 306 |
output_prompt.append(response_text)
|
| 307 |
output_prompt = " ".join(output_prompt)
|
| 308 |
return output_prompt
|
|
@@ -437,8 +449,12 @@ def generate_30(
|
|
| 437 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 438 |
filename= f'rv_IPb_{timestamp}.png'
|
| 439 |
print("-- using image file --")
|
|
|
|
|
|
|
| 440 |
prompt = " ".join(prompt)
|
| 441 |
-
|
|
|
|
|
|
|
| 442 |
print(captions)
|
| 443 |
print("-- not generating further caption --")
|
| 444 |
global model5
|
|
@@ -562,8 +578,12 @@ def generate_60(
|
|
| 562 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 563 |
filename= f'rv_IPb_{timestamp}.png'
|
| 564 |
print("-- using image file --")
|
|
|
|
|
|
|
| 565 |
prompt = " ".join(prompt)
|
| 566 |
-
|
|
|
|
|
|
|
| 567 |
print(captions)
|
| 568 |
print("-- not generating further caption --")
|
| 569 |
global model5
|
|
@@ -687,8 +707,12 @@ def generate_90(
|
|
| 687 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 688 |
filename= f'rv_IPb_{timestamp}.png'
|
| 689 |
print("-- using image file --")
|
|
|
|
|
|
|
| 690 |
prompt = " ".join(prompt)
|
| 691 |
-
|
|
|
|
|
|
|
| 692 |
print(captions)
|
| 693 |
print("-- not generating further caption --")
|
| 694 |
global model5
|
|
|
|
| 243 |
f.write(f"Model UNET: ford442/RealVisXL_V5.0_BF16 \n")
|
| 244 |
upload_to_ftp(filename)
|
| 245 |
|
|
|
|
| 246 |
def captioning(img):
|
| 247 |
prompts_array = [
|
| 248 |
# "Adjectives describing this scene are:",
|
|
|
|
| 264 |
**inputsa,
|
| 265 |
do_sample=False,
|
| 266 |
num_beams=5,
|
| 267 |
+
max_length=256,
|
| 268 |
min_length=64,
|
| 269 |
top_p=0.9,
|
| 270 |
repetition_penalty=1.5,
|
|
|
|
| 279 |
# Loop through prompts array:
|
| 280 |
for prompt in prompts_array:
|
| 281 |
inputs = processor5(images=img, text=prompt, return_tensors="pt").to('cuda')
|
| 282 |
+
#with torch.no_grad():
|
| 283 |
generated_ids = model5.generate(
|
| 284 |
**inputs,
|
| 285 |
do_sample=False,
|
| 286 |
num_beams=5,
|
| 287 |
max_length=64,
|
| 288 |
+
min_length=24,
|
| 289 |
top_p=0.9,
|
| 290 |
repetition_penalty=1.5,
|
| 291 |
length_penalty=1.0,
|
|
|
|
| 297 |
print(f"{response_text}\n")
|
| 298 |
inputf = processor5(
|
| 299 |
images=img,
|
| 300 |
+
text=generated_text + ' So therefore, ',
|
| 301 |
return_tensors="pt"
|
| 302 |
).to('cuda')
|
| 303 |
+
generated_ids = model5.generate(
|
| 304 |
+
**inputf,
|
| 305 |
+
do_sample=False,
|
| 306 |
+
num_beams=5,
|
| 307 |
+
max_length=256,
|
| 308 |
+
min_length=24,
|
| 309 |
+
top_p=0.9,
|
| 310 |
+
repetition_penalty=1.5,
|
| 311 |
+
length_penalty=1.0,
|
| 312 |
+
temperature=1,
|
| 313 |
+
)
|
| 314 |
+
)
|
| 315 |
generated_texta = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 316 |
response_text = generated_texta.replace(generated_text, "").strip()
|
| 317 |
+
print(f"{response_text}\n")
|
| 318 |
output_prompt.append(response_text)
|
| 319 |
output_prompt = " ".join(output_prompt)
|
| 320 |
return output_prompt
|
|
|
|
| 449 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 450 |
filename= f'rv_IPb_{timestamp}.png'
|
| 451 |
print("-- using image file --")
|
| 452 |
+
print("-- CURRENT PROMPT --")
|
| 453 |
+
print(prompt)
|
| 454 |
prompt = " ".join(prompt)
|
| 455 |
+
print("-- CURRENT PROMPT AFTER .join --")
|
| 456 |
+
print(prompt)
|
| 457 |
+
captions = " ".join(caption)
|
| 458 |
print(captions)
|
| 459 |
print("-- not generating further caption --")
|
| 460 |
global model5
|
|
|
|
| 578 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 579 |
filename= f'rv_IPb_{timestamp}.png'
|
| 580 |
print("-- using image file --")
|
| 581 |
+
print("-- CURRENT PROMPT --")
|
| 582 |
+
print(prompt)
|
| 583 |
prompt = " ".join(prompt)
|
| 584 |
+
print("-- CURRENT PROMPT AFTER .join --")
|
| 585 |
+
print(prompt)
|
| 586 |
+
captions = " ".join(caption)
|
| 587 |
print(captions)
|
| 588 |
print("-- not generating further caption --")
|
| 589 |
global model5
|
|
|
|
| 707 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 708 |
filename= f'rv_IPb_{timestamp}.png'
|
| 709 |
print("-- using image file --")
|
| 710 |
+
print("-- CURRENT PROMPT --")
|
| 711 |
+
print(prompt)
|
| 712 |
prompt = " ".join(prompt)
|
| 713 |
+
print("-- CURRENT PROMPT AFTER .join --")
|
| 714 |
+
print(prompt)
|
| 715 |
+
captions = " ".join(caption)
|
| 716 |
print(captions)
|
| 717 |
print("-- not generating further caption --")
|
| 718 |
global model5
|