Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -24,6 +24,7 @@ import paramiko
|
|
| 24 |
import gc
|
| 25 |
import time
|
| 26 |
import datetime
|
|
|
|
| 27 |
|
| 28 |
#os.system("chmod +x ./cusparselt.sh")
|
| 29 |
#os.system("./cusparselt.sh")
|
|
@@ -97,7 +98,8 @@ DEFAULT_STYLE_NAME = "Style Zero"
|
|
| 97 |
STYLE_NAMES = list(styles.keys())
|
| 98 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 99 |
|
| 100 |
-
|
|
|
|
| 101 |
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
| 102 |
if style_name in styles:
|
| 103 |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
|
@@ -118,9 +120,9 @@ def load_and_prepare_model(model_id):
|
|
| 118 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
| 119 |
# vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None).to('cuda')
|
| 120 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/Juggernaut-XI-v11-fp32', subfolder='scheduler',beta_schedule="scaled_linear",use_karras_sigmas=True)
|
| 121 |
-
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1)
|
| 122 |
-
|
| 123 |
-
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
|
| 124 |
# sched = EulerAncestralDiscreteScheduler.from_config('ford442/RealVisXL_V5.0_BF16', beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 125 |
pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0")
|
| 126 |
|
|
@@ -237,6 +239,7 @@ def generate_30(
|
|
| 237 |
"guidance_scale": guidance_scale,
|
| 238 |
"num_inference_steps": num_inference_steps,
|
| 239 |
"generator": generator,
|
|
|
|
| 240 |
"output_type": "pil",
|
| 241 |
}
|
| 242 |
if use_resolution_binning:
|
|
@@ -303,6 +306,7 @@ def generate_60(
|
|
| 303 |
"guidance_scale": guidance_scale,
|
| 304 |
"num_inference_steps": num_inference_steps,
|
| 305 |
"generator": generator,
|
|
|
|
| 306 |
"output_type": "pil",
|
| 307 |
}
|
| 308 |
if use_resolution_binning:
|
|
@@ -369,6 +373,7 @@ def generate_90(
|
|
| 369 |
"guidance_scale": guidance_scale,
|
| 370 |
"num_inference_steps": num_inference_steps,
|
| 371 |
"generator": generator,
|
|
|
|
| 372 |
"output_type": "pil",
|
| 373 |
}
|
| 374 |
if use_resolution_binning:
|
|
|
|
| 24 |
import gc
|
| 25 |
import time
|
| 26 |
import datetime
|
| 27 |
+
from diffusers.schedulers import AysSchedules
|
| 28 |
|
| 29 |
#os.system("chmod +x ./cusparselt.sh")
|
| 30 |
#os.system("./cusparselt.sh")
|
|
|
|
| 98 |
STYLE_NAMES = list(styles.keys())
|
| 99 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 100 |
|
| 101 |
+
sampling_schedule = AysSchedules["StableDiffusionXLTimesteps"]
|
| 102 |
+
|
| 103 |
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
| 104 |
if style_name in styles:
|
| 105 |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
|
|
|
| 120 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
| 121 |
# vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None).to('cuda')
|
| 122 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/Juggernaut-XI-v11-fp32', subfolder='scheduler',beta_schedule="scaled_linear",use_karras_sigmas=True)
|
| 123 |
+
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
| 124 |
+
sched = EulerAncestralDiscreteScheduler(timestep_spacing="trailing",steps_offset=1)
|
| 125 |
+
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
|
| 126 |
# sched = EulerAncestralDiscreteScheduler.from_config('ford442/RealVisXL_V5.0_BF16', beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 127 |
pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0")
|
| 128 |
|
|
|
|
| 239 |
"guidance_scale": guidance_scale,
|
| 240 |
"num_inference_steps": num_inference_steps,
|
| 241 |
"generator": generator,
|
| 242 |
+
"timesteps": sampling_schedule,
|
| 243 |
"output_type": "pil",
|
| 244 |
}
|
| 245 |
if use_resolution_binning:
|
|
|
|
| 306 |
"guidance_scale": guidance_scale,
|
| 307 |
"num_inference_steps": num_inference_steps,
|
| 308 |
"generator": generator,
|
| 309 |
+
"timesteps": sampling_schedule,
|
| 310 |
"output_type": "pil",
|
| 311 |
}
|
| 312 |
if use_resolution_binning:
|
|
|
|
| 373 |
"guidance_scale": guidance_scale,
|
| 374 |
"num_inference_steps": num_inference_steps,
|
| 375 |
"generator": generator,
|
| 376 |
+
"timesteps": sampling_schedule,
|
| 377 |
"output_type": "pil",
|
| 378 |
}
|
| 379 |
if use_resolution_binning:
|