Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -106,7 +106,7 @@ def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str
|
|
| 106 |
|
| 107 |
def load_and_prepare_model():
|
| 108 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None)
|
| 109 |
-
vaeX = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None,use_safetensors=False)
|
| 110 |
#vae = AutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2',use_safetensors=False)
|
| 111 |
#vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
|
| 112 |
#vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
|
|
@@ -116,7 +116,7 @@ def load_and_prepare_model():
|
|
| 116 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
| 117 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
| 118 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
| 119 |
-
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
|
| 120 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
| 121 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
| 122 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
|
|
@@ -129,8 +129,8 @@ def load_and_prepare_model():
|
|
| 129 |
add_watermarker=False,
|
| 130 |
# custom_pipeline="lpw_stable_diffusion_xl",
|
| 131 |
#use_safetensors=True,
|
| 132 |
-
|
| 133 |
-
|
| 134 |
# vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
|
| 135 |
# vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
|
| 136 |
#vae=vae,
|
|
@@ -165,7 +165,7 @@ def load_and_prepare_model():
|
|
| 165 |
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
|
| 166 |
#pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 167 |
#pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
|
| 168 |
-
pipe.vae = vaeX
|
| 169 |
#pipe.unet = unetX
|
| 170 |
|
| 171 |
#pipe.vae.do_resize=False
|
|
@@ -179,8 +179,8 @@ def load_and_prepare_model():
|
|
| 179 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 180 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
| 181 |
|
| 182 |
-
pipe.to(device
|
| 183 |
-
pipe.to(torch.bfloat16)
|
| 184 |
#apply_hidiffusion(pipe)
|
| 185 |
|
| 186 |
#pipe.unet.set_default_attn_processor()
|
|
|
|
| 106 |
|
| 107 |
def load_and_prepare_model():
|
| 108 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None)
|
| 109 |
+
vaeX = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None,use_safetensors=False, token=HF_TOKEN)
|
| 110 |
#vae = AutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2',use_safetensors=False)
|
| 111 |
#vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
|
| 112 |
#vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
|
|
|
|
| 116 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
| 117 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
| 118 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
| 119 |
+
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True, token=HF_TOKEN)
|
| 120 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
| 121 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
| 122 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
|
|
|
|
| 129 |
add_watermarker=False,
|
| 130 |
# custom_pipeline="lpw_stable_diffusion_xl",
|
| 131 |
#use_safetensors=True,
|
| 132 |
+
token=HF_TOKEN,
|
| 133 |
+
# vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
|
| 134 |
# vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
|
| 135 |
# vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
|
| 136 |
#vae=vae,
|
|
|
|
| 165 |
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
|
| 166 |
#pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 167 |
#pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
|
| 168 |
+
pipe.vae = vaeX #.to(torch.bfloat16)
|
| 169 |
#pipe.unet = unetX
|
| 170 |
|
| 171 |
#pipe.vae.do_resize=False
|
|
|
|
| 179 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 180 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
| 181 |
|
| 182 |
+
pipe.to(device=device, dtype=torch.bfloat16)
|
| 183 |
+
#pipe.to(torch.bfloat16)
|
| 184 |
#apply_hidiffusion(pipe)
|
| 185 |
|
| 186 |
#pipe.unet.set_default_attn_processor()
|