Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,10 +18,10 @@ from typing import Tuple
|
|
| 18 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 19 |
import paramiko
|
| 20 |
|
| 21 |
-
os.system("chmod +x ./cusparselt.sh")
|
| 22 |
-
os.system("./cusparselt.sh")
|
| 23 |
-
os.system("chmod +x ./cudnn.sh")
|
| 24 |
-
os.system("./cudnn.sh")
|
| 25 |
|
| 26 |
torch.backends.cuda.matmul.allow_tf32 = False
|
| 27 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
|
@@ -109,14 +109,12 @@ def load_and_prepare_model(model_id):
|
|
| 109 |
"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,
|
| 110 |
}
|
| 111 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
| 112 |
-
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16,safety_checker=None).to('cuda')
|
| 113 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 114 |
model_id,
|
| 115 |
torch_dtype=torch.bfloat16,
|
| 116 |
-
use_safetensors=True,
|
| 117 |
add_watermarker=False,
|
| 118 |
vae=vae,
|
| 119 |
-
safety_checker=None,
|
| 120 |
)
|
| 121 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 122 |
pipe.to(torch.bfloat16)
|
|
@@ -161,8 +159,8 @@ def generate(
|
|
| 161 |
seed: int = 1,
|
| 162 |
width: int = 768,
|
| 163 |
height: int = 768,
|
| 164 |
-
guidance_scale: float =
|
| 165 |
-
num_inference_steps: int =
|
| 166 |
randomize_seed: bool = False,
|
| 167 |
use_resolution_binning: bool = True,
|
| 168 |
num_images: int = 1,
|
|
@@ -212,7 +210,7 @@ def generate_cpu(
|
|
| 212 |
width: int = 768,
|
| 213 |
height: int = 768,
|
| 214 |
guidance_scale: float = 5,
|
| 215 |
-
num_inference_steps: int =
|
| 216 |
randomize_seed: bool = False,
|
| 217 |
use_resolution_binning: bool = True,
|
| 218 |
num_images: int = 1,
|
|
@@ -359,14 +357,14 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 359 |
minimum=0.1,
|
| 360 |
maximum=6,
|
| 361 |
step=0.1,
|
| 362 |
-
value=
|
| 363 |
)
|
| 364 |
num_inference_steps = gr.Slider(
|
| 365 |
label="Number of inference steps",
|
| 366 |
minimum=10,
|
| 367 |
maximum=1000,
|
| 368 |
step=10,
|
| 369 |
-
value=
|
| 370 |
)
|
| 371 |
|
| 372 |
gr.Examples(
|
|
|
|
| 18 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 19 |
import paramiko
|
| 20 |
|
| 21 |
+
#os.system("chmod +x ./cusparselt.sh")
|
| 22 |
+
#os.system("./cusparselt.sh")
|
| 23 |
+
#os.system("chmod +x ./cudnn.sh")
|
| 24 |
+
#os.system("./cudnn.sh")
|
| 25 |
|
| 26 |
torch.backends.cuda.matmul.allow_tf32 = False
|
| 27 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
|
|
|
| 109 |
"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,
|
| 110 |
}
|
| 111 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
| 112 |
+
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16,safety_checker=None).to(torch.bfloat16).to('cuda')
|
| 113 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 114 |
model_id,
|
| 115 |
torch_dtype=torch.bfloat16,
|
|
|
|
| 116 |
add_watermarker=False,
|
| 117 |
vae=vae,
|
|
|
|
| 118 |
)
|
| 119 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 120 |
pipe.to(torch.bfloat16)
|
|
|
|
| 159 |
seed: int = 1,
|
| 160 |
width: int = 768,
|
| 161 |
height: int = 768,
|
| 162 |
+
guidance_scale: float = 4.2,
|
| 163 |
+
num_inference_steps: int = 250,
|
| 164 |
randomize_seed: bool = False,
|
| 165 |
use_resolution_binning: bool = True,
|
| 166 |
num_images: int = 1,
|
|
|
|
| 210 |
width: int = 768,
|
| 211 |
height: int = 768,
|
| 212 |
guidance_scale: float = 5,
|
| 213 |
+
num_inference_steps: int = 250,
|
| 214 |
randomize_seed: bool = False,
|
| 215 |
use_resolution_binning: bool = True,
|
| 216 |
num_images: int = 1,
|
|
|
|
| 357 |
minimum=0.1,
|
| 358 |
maximum=6,
|
| 359 |
step=0.1,
|
| 360 |
+
value=4.2,
|
| 361 |
)
|
| 362 |
num_inference_steps = gr.Slider(
|
| 363 |
label="Number of inference steps",
|
| 364 |
minimum=10,
|
| 365 |
maximum=1000,
|
| 366 |
step=10,
|
| 367 |
+
value=250,
|
| 368 |
)
|
| 369 |
|
| 370 |
gr.Examples(
|